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FOREWORD

A Two-Gas Atmosphere Control Subsystem was developed by the

Biotechnology and Space Sciences Department, Engineering.Division,

of the McDonnell Douglas Astronautics Company (MDAC), Huntington

Beach, California, under NASA Contract NAS9-12924.

This contract effort was performed under the technical direction

of Mr. A. C. Copeland, Jr., of the Experiment Systems Division,

Lyndon B. Johnson Space Center, National Aeronautics and Space

Administration, Houston, Texas.

ii



TABLE OF CONTENTS

Page

Section 1 SUMMARY 1

Section 2 INTRODUCTION 4

Section 3 PROGRAM OBJECTIVES 7

Section 4 REQUIREMENTS 9

4.1 System Requirements 9
4.1.1 Space Station Prototype 9
4.1.2 Space Shuttle Orbiter Requirements 13
4.2 Performance Characteristics 16
4.2.1 Mass Spectrometer Sensor 16
4.2.2 Electronic Control Assembly 20
4.2.2.1 Nitrogen Channel 20
4.2.2.2 Oxygen Channel 28
4.2.3 Packaging Considerations 35

Section 5 DETAIL DESIGN 36

5.1 Circuit Design 36
5.1.1 Input Circuit Selection 36
5.1.2 Integrating Amplifiers 43
5.1.3 Clock Circuit 46
5.1.4 Logic and Output Circuits 48
5.1.5 Circuit Boards 49
5.1.6 Component Selection 49
5.2 Prototype Testing and Final Design 49
5.3 Set Point Adjustment 50
5.4 Interface Definition 51
5.4.1 Mass Spectrometer Sensor 51
5.4.2 Interface Buffer Assembly 52
5.4.3 Electronic Control Assembly 53
5.4.4 Bench Checkout Unit 56
5.4.5 Pressure Control Panel 59

Section 6 TEST EQUIPMENT AND PROCEDURES 61

6.1 Functional Checkout Test 61
6.1.1 Functional Checkout Test Setup 61
6.1.2 Functional Checkout Test Procedure 62
6.2 High and Low Temperature Tests 62
6.3 60-Day Endurance Test 64
6.3.1 Endurance Test Setup 67
6.3.2 Endurance Test Procedures 75

Section 7 TEST RESULTS 77

7.1 Test Chronology 77
7.2 Functional Checkout and Extreme Temperature Tests 80

iii



TABLE OF CONTENTS (continued)

Page

7.2.1 Effect of Temperature Extremes. 82

7.2.2 Comparison of Pre and Post Test Data 83

7.2.3 Correction of Set Point by Jumper Resistors 83
7.2.4 Nitrogen Channel Pulse Frequency 85

7.3 Endurance Test 85
7.3.1 Auxiliary Tests and Calibrations 85
7.3.1.1 Chamber Volume Determination 87
7.3.1.2 Nitrogen Pulse Size Calibration 88
7.3.1.3 Chamber Leakage Check 89
7.3.2 Control Accuracy 89
7.3.2.1 Nitrogen Channel 90
7.3.2.2 Oxygen Channel 92
7.3.2.3 Total Pressures 97
7.3.3 Mass Balance Data 104
7.3.4 Leakage Measurement 108
7.3.5 Transient Performance Data 110
7.4 Mass Spectrometer Performance 116
7.5 Failure Data 120

Section 8 DISCUSSION 122

8.1 Control Accuracy 122
8.2 Set Point Adjustment 126
8.3 Flow Measurement by Counting Pulses 126
8.4 Leakage Measurement 126
8.5 Fault Detection 127
8.6 Other Control Modes 127

Section 9 CONCLUSIONS AND RECOMMENDATIONS 128

Section 10 REFERENCES 130

iv



LIST OF FIGURES

Figure Title Page

1 Schematic of Pulse-Modulated Proportional Control
Channel 21

2 Simplified Dynamic Diagram, Nitrogen Channel 23

3 Simplified Block Diagram of Oxygen Control Channel 29

4 Typical Basic Integrating Amplifier Circuit 37

5 Set Point Selection by Attenuating Input Signal 39

6 Set Point Selection by Attenuating Reference Voltage 39

7 Oxygen Channel Input Circuit 42

8 N2 Channel Integrator Circuit 44

9 Clock Circuit and Timing 47

10 Bench Check Unit Front Panel 57

11 Bench Check Unit Back Panel 57

12 Typical Pneumatic Circuit 60

13 Sample ECA Functional Test Data Sheet 63

14 Endurance Test Schematic 68

15 Data System Schematic 69

16 Sample of Endurance Test Data Sheet 73

17 Set Point Decrease of N2 Channel by use of Series
Resistance Jumpers 84

18 Integrator Performance at 14.7 PSIA Set Point 86

19 Cumulative Frequency of PP N Readings
5 PSIA Portion of Endurance Test 91

20 Cumulative Frequency of PP N2 Readings
10 PSIA Portion of Endurance Test 93

21 Cumulative Frequency of PP 0 Readings
5 PSIA Portion of Endurance Test 96

22 Cumulative Frequency of PP 02 Readings
10 PSIA Portion of Endurance Test 98

23 Cumulative Frequency of Total Pressure Readings
5 PSIA Portion of Endurance Test 102

24 Cumulative Frequency of Total Pressure Readings
10 PSIA Portion of Endurance Test 103

25 N2 Valve Frequency for Measuring Cabin Leakage 109

V



LIST OF FIGURES (continued)

Figure Title Page

26 0 Partial Pressure Transient
Initial Start Up, 60 Day Test, 5 PSIA Set Point 111

27 Nitrogen Partial Pressure Transient 111

28 Partial Pressure N vs Time (Transition from
10 PSIA to 14.7 PSA) 113

29 Nitrogen Integrator Performance Durine Transient,
10 to 14.7 PSIA Set Point 114

30 Nitrogen Valve Operation During Transient
From 10 to 14.7 PSIA Set Point 115

31 Calibration of the Mass Spectrometer Sensor 118

32 Use of 2-Gas Control to Detect N2 Supply Failure 121

33 Shuttle Leak Rate at 14.7 PSIA Cabin Pressure
Summary of PP.N2 Data 123

34 Shuttle Leak Rate at 14.7 PSIA Cabin Pressure
Summary of PP 02 Data 124

35 Shuttle Leak Rate at 14.7 PSIA Cabin Pressure
Summary of Total Pressure Data 125

vi



LIST OF TABLES

Table
Number Title Page

1 Representative SSP Design Requirements 10

2 Atmosphere Control Subsystem Accuracy and
Set Point Requirements 12

3 Representative Space Shuttle Orbiter Design
Requirements 14

4 Space Shuttle Orbiter Atmosphere Requirements 15

5 Nominal Atmosphere Composition 15

6 Signal Characteristics of Mass Spectrometer Sensor 18

7 Rate of Change of PP 02 for Various Rates of
02 Generation 31

8 Overshoot/Undershoot Due to Integrator Time Constant 35

9 Resistance Ratios for N2 Set Point Selection 40

10 Resistor Values for Set Point Selection - N2 Channel 41

11 Resistor Values for Set Point Selection - 02 Channel 43

12 Effects of External Resistance on Control Set Point 50

13 Mass Spectrometer Electrical Interface 52

14 Electrical Connectors of the Bench Checkout Unit 59

15 Relationship of Endurance Test Leakage Rates to

Space Shuttle Cabin Leakage Rates 66

16 Test Measurement List 70

17 Test System Instrumentation and Equipment List 74

18 Chronology of Test Procedures 78

19 Functional Checkout Test Data Summary 81

20 Dependence of ECA Upon Ambient Temperature 82

21 Summary of Data on N2 Channel at 14.7 PSIA 94

22 Summary of Cumulative Frequency of PP N2 Data
14.7 PSIA Set Point 95

23 Summary Data on 02 Channel at 14.7 PSIA 99

24 Summary of Cumulative Frequency of 02 Control Data
14.7 PSIA Set Point 100

vii



LIST OF TABLES

(continued)

Table
Number Title Page

25 Summary Data on Total Pressures at 14.7 PSIA Set Point 105

26 Summary of Cumulative Frequency of Total Pressure
Data 106

27 Mass Balance Summary 107

28 Analysis of Ambient Air Samples by Mass Spectrometer 119

viii



Section 1

SUMMARY

An Atmosphere Control Subsystem has been developed for NASA-LBJSC under

Contract NAS9-12924 which is designed to measure the major atmospheric

constituents in the manned cabin of the Space Shuttle Orbiter and control

the addition of oxygen and nitrogen to maintain the partial pressures of

these gases within very close limits.

The ACS includes a Mass Spectrometer Sensor (MSS) which analyses the atmos-

phere of a Shuttle vehicle pressurized cabin, and an Electronic Control

Assembly (ECA). The MSS was built by Perkin Elmer Corporation for NASA

and tested under Contract NAS9-9799 to meet the requirements for flight

equipment for the M-171 Metabolic Analyser experiment for the Skylab flight

program. This instrument analyzes an atmospheric gas sample and produces

continuous 0-5 vdc analog signals proportional to the partial pressures of

H2, 02, N2 , H20, CO2 and total hydrocarbons having a m/e ratio between 50

and 120. The ECA was designed and fabricated by McDonnell Douglas Astro-

nautics Company (MDAC) under the present contract. It accepts signals

from the MSS proportional to the partial pressures of N2 and 02 and controls

the supply of these gases to the closed cabin.



The ECA is designed to meet requirements for man-rating and flight quali-

fication. Wherever possible, electronic components having known high

reliability have been utilized; in only a few instances has it been necessary

to substitute MIL-STD parts where procurement lead times have prevented use

of equivalent high reliability parts.

The ACS was subjected to functional checkout, high and low temperature tests,

and a 60-day endurance test. During the endurance test the unit was used

to control the atmosphere in a closed chamber having 876 cu ft volume,

simulating the Shuttle Orbiter cabin. A sample of the chamber atmosphere

was provided to the MSS which provided continuous output signals. The 02
and N2 signals were provided as inputs to the ECA. Outputs from the ECA

were used to control valves in gaseous 02 and N2 supplies to make up for

chamber leakage. A diaphragm compressor was used to draw the atmosphere

sample through the MSS and return it to the chamber. A portion of this flow

was released through a micrometer metering valve and measured by a positive

displacement meter to simulate cabin leakage.

Portions of the endurance test were performed at 5 and 10 psia set points.

48 days were spent at the 14.7 psia set point, and data obtained for a

variety of simulated leakage values. An automatic data recording system

was used to document performance during transients and obtain statistically

significant samples at each stable operating condition.

Performance of the ACS in controlling the partial pressures of 02 and N2
and the total pressure within the chamber was well within specification

requirements. The accuracy of all data for N2 control was within + 0.31

percent during the 14.7 psia segment of the test. The bandwidth of the 02

control was 3.3 torr (0.064 psi). The total pressures were slightly low

since there was no source of metabolic H20 and CO2 within the chamber, as

there would be in a manned application. All values of total pressure
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were between 748.0 torr (14.47 psia) and 755.5 torr (14.61 psia), compared

with required limits of 749.6 torr (14.5 psia) and 770.3 torr (14.9 psia).

Only 4 percent of the data points fell below the minimum level of 149.6 torr,

even without the H20 and CO2 in the atmosphere.

The ability of the control to perform gas flow measurements by counting

N2 pulses was evaluated. The overall error in N2 usage was approximately

4 percent. There is reason to believe that this could be improved considerably

by improved design of the pneumatics section of the system, which was not

covered in the present contract.

A method of measuring cabin leakage by monitoring N2 pulse frequency was

evaluated. It was found that a short term (1/2 hour or less) accuracy of

+ 2.75 lb/day of leakage from the Shuttle cabin could be expected with

existing performance. Some methods of design improvements were indicated

that probably would reduce this value. The long term accuracy, of course,

approaches that of the flow measurement mentioned in the previous paragraph.

The ability of the ACS to perform fault detection was illustrated by an

incident in which loss of the gaseous N2 supply could have been detected

within 1/2 hour if the system were continuously monitored. Fault detection

of this sort is relatively simple to incorporate in the system.

Although the ACS has been developed for use of the MSS as an atmosphere

composition sensor, it is entirely possible to use the control assembly

with other types of sensors (pp 02, total pressure) where system require-

ments do not result in use of the Mass Spectrometer.
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Section 2

INTRODUCTION

The development of the pulse-modulated proportional method of controlling

the oxygen and nitrogen partial pressures in a spacecraft cabin atmos-

phere has been undertaken by McDonnell Douglas Astronautics Company since

1964.

The first unit was made from commercially available components in 1964.

This unit used a strain gage sensor, measuring total pressure in the

cabin, as an input to the nitrogen control channel; and a Beckman polaro-

graphic 02 partial pressure sensor as input to the oxygen control channel.

It was used initially during a 12 day and then a 30 day closed chamber

manned test during January, 1965. After refurbishment it was then used

in a series of shorter tests and finally in a 60-day closed-chamber manned

test during February-April 1968. During this latter test period, a proto-

type mass spectrometer atmosphere analyzer, manufactured by Perkin-Elmer

of Pomona, California, was provided as GFE by NASA, Langley, for evaluation.

During the initial portion of the 60-day test period it was observed that

operation of the mass spectrometer atmosphere sensor was very good, and the

02 and N2 signals of the mass spectrometer were substituted for the polaro-

graphic and total pressure signals originally used. Performance of the

control was equally good with either sensing methods.

In 1970, a 90-day manned test was conducted for NASA-Langley under Contract

NASl-8997. In preparation for this test, a more compact version of the

atmosphere control was built. This unit, the Mark II, was capable of

accepting inputs from either the mass spectrometer or the polarographic

and total pressure sensors.
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This unit was completed, checked out, and installed in the Space Vehicle

Simulator chamber for the 90-day test. However, a flight type control

was built on Contract NAS1-8997. The Mark II was therefore used as a backup

unit during the test and the Mark III, flight-type unit was used as the

primary control. The Mark III unit was also capable of accepting signals

from either the mass spectrometer or the 02 partial pressure-total pressure

sensors. Since the entire 90-day test period was completed without any

malfunction of either the Mark III control or the mass spectrometer, the

alternate sensors or backup Mark II control were never actually used for

controlling the atmosphere in the chamber.

At the start of the effort on the current contract, a study was undertaken

to review previous test experience, especially with the Mark III unit during

the 90-day test. This study was reported in Reference 1. During this study

system design constants were determined which would insure best possible

performance of the ACS. Although the design philosophy was developed relative

to the Space Station Prototype requirements, which reflected the original

application of the ACS, they have been upgraded to comply with the Space

Shuttle which is the application presently intended.

During the 90-day test it was noted that variations in cabin leakage, as

indicated by changes in cabin total pressure, appeared to correlate frequently

with equipment or crew operations. The long time constant associated with

pressure decay measurement made it nearly impossible to detect and correct

leakage sources in a timely manner. Typical sources of leakage that were

suspected were: the weekly operation of the pass-through airlock for removing

samples from the cabin, operation of the fecal drier overboard vent valve,

operati..on of the VD/VF water recovery unit overboard vent valve, installation

of the Sabatier reactor after replacing the catalyst, sealing the commode

after replacing the liner, etc. From these observations it appeared that

development of a methodology for detecting cabin leakage changes by means of

related output of the atmosphere control would be very beneficial in indicating

the need for corrective action. This could result in considerable reduction

in cabin gas losses.

-5-



Such a methodology was investigated analytically and reported in Reference 2.

The results of this study were used to guide the test planning for the 60-day

endurance test reported herein. This involved the automatic collection of

data for a significant period of time to measure transient and steady state

performance while a series of cabin leakage values were imposed. The test

was successful in providing these data, and improvements in the methodology

can now be made on the basis of empirically determined performance.
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Section 3

PROGRAM OBJECTIVES

The objective of the effort described in this report was to design, fabricate

and test a 2-gas Atmosphere Control Subsystem (ACS) which monitors the major

constituents in a space cabin atmosphere and controls the addition of

oxygen and nitrogen to keep the atmosphere composition within prescribed

limits.

The ACS includes the Mass Spectrometer Sensor (MSS) developed by the Aero-

space Division of Perkin Elmer Corporation under NASA Contract NAS9-9799

(Serial Number 006) and the Electronic Control Assembly (ECA) designed

and built by MDAC under the present Contract (NAS9-12924). The atmosphere

composition is sensed by the MSS which generates 0-5 vdc analog signals

proportional to the partial pressures of 02' N2, H2, H20, C02 , and total

hydrocarbons having a mass/charge (m/e) ratio between 50 and 120. The

sampling point is chosen to insure a flow of gas to the MSS having a

composition representative of that of the cabin; typically, the inlet duct

of the atmosphere thermal control unit.

The 02 and N2 signals are provided to the ECA, which compares them with

fixed reference voltages and generates output signals for controling the

addition of 02 and/or N2 to the cabin. Either gas can be supplied from

high pressure storage; the oxygen may alternatively be supplied from a water

electrolysis unit. In the case of nitrogen, the output signal consists of

pulses of predetermined duration, with a frequency which is proportional

to the difference between sensed N2 pressure and the set point. In the

case of oxygen, a discrete voltage will be generated at a low level set

point and deactivated at a high level set point. These two set points

represent two levels of output from the oxygen generation unit. The 02

and N2 are added to the atmosphere at a point somewhat remote
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from the mass spectrometer sensing point to avoid getting a reading not

representative of the cabin atmosphere. Typically, this gas is added

into the atmosphere distribution duct.

At the start of the program, the ACS was to supply the Atmosphere Control

function for the Environmental and Thermal Control/Life Support System

(ETC/LSS) for the Space Station Prototype (SSP), and meet all the interface

requirements of that system. That requirement was cancelled at the mid-

point of the program, shortly after CDR. The program was then redirected

to provide for Atmosphere Control of the Space Shuttle Orbiter. At the

point in which the program was redirected, many of the interfaces originally

defined for the ETC/LSS were deleted. However, some of these were retained.

As a result, this report must review both sets of requirements in order to

show where final system design definition was derived from.
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Section 4

REQUIREMENTS

System requirements were established initially for the ETC/LSS of the

Space Station Prototype program. These requirements were later changed to

those of the Space Shuttle Orbiter. Both sets of requirements will be

presented here since those for the ETC/LSS resulted in some interface

and performance requirements definition that were carried forward to the

final design, and the necessary equipment to modify the final design to

meet Space Station requirements could be readily added if this is ever

desired.

In addition to System Requirements, design studies have been conducted

to define functional and interface requirements, which will also be

reported in this section.

4.1 System Requirements

4.1.1 Space Station Prototype

The Space Station Prototype program was to provide an ETC/LSS for a modular

space station to be launched and serviced by the Space Shuttle Orbiter.

The key requirements to be met by the Atmosphere Control are listed in

Table 1. In addition, subsystems of critical importance to the mission

were to provide fail operational capability and automatic checkout, with

crew notification and onboard checkout system cognizance of any anomoly in

performance until correction.

A system requirement of significant impact was that for operation from

115 v, 400 Hz power supply. Accordingly, the ACS was designed with external

solid state power supplies for conversion of this ac voltage to the

required precision regulated dc voltages. Also, ACS output was to be
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Table 1

REPRESENTATIVE SSP DESIGN REQUIREMENTS*

Spacecraft Operational Lifetime 2 to 10 years

Module Size (maximum) 14 ft diam x 58-ft length

Pressurized volumes

Power Module (1) 1,600 ft3

Standard Module (4) 3,600 ft 3

Core Module (1) 5,500 ft3

Pressure isolatable volume (for crew
survival during emergency conditions) 8,000 to 15,000 ft3

Number of independent habitable volumes 2

Crew number (each habitable volume) 2 to 6 crewmen

02 consumption

Design point 1.84 lb/man-day

Maximum for 6 men (8 hours) 0.64 lb/hr

Maximum normal atmospheric leakage

at 5.0 psia 6 lb/day

at 10.0 psia 12 lb/day

at 14.7 psia 18 lb/day

Power supply charactersitics 115/200 volts, 3 phase, 400 Hz ac

N2 Supply High Pressure Storage

02 Supply Water Electrolysis Unit

* NOTE: Reference 3
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solid state zero crossover switches to energize the 400 Hz motor operated

control valves, with power to be removed upon closing a limit switch on

attainment of the desired valve position.

On the basis of SSP operating requirements, the ACS was to provide for

operation at three selectable settings of total pressure: 5, 10 and 14.7

psia. The allowable band for total pressure is + 0.2 psi. At each total

pressure, three set points are provided. One setpoint provides a pulse-

frequency modulated output to the nitrogen control valve with the frequency

being proportional to error in nitrogen partial pressure from a preset

reference value. The other two setpoints are used for control of oxygen

admission, with the lower to activate a discrete signal and the upper

set point to deactivate the discrete signal. In the closed, manned cabin,

it was intended that this signal would switch the output of a water electrolysis

unit so that the presence of the signal would cause oxygen production to be

about 120 percent of nominal and the absence of the signal, about 80 percent

of nominal. The nominal atmosphere compositions and allowable variations

are given in Table 2. It was specifically required that the 02 and N2 partial

pressures fall within the indicated ranges; the set points were considered

as nominal design values.

The ACS was to be designed as close to flight configuration as possible,

to meet the requirements for operation in a closed chamber during manned

testing. All components were to be of established high reliability, or

MIL-STD parts having high reliability equivalent parts which are functionally

interchangeable.

Acceptance testing of the ACS was to include Functional Checkout, operation

at high temperature (1000F, +5, - 00F) and low temperature (400F, +0, -5QF)9

and 60 days of endurance testing. Random vibration and electromagnetic

interference tests were also originally required but were deleted due to

budgetary limitations. Also, the EMI tests were designed to determine

system effects on the power supply and were not meaningful when the design

requirements to use external 400 Hz-to dc converters and specified solid
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Table 2

ATMOSPHERE CONTROL SUBSYSTEM ACCURACY AND
SET POINT REQUIREMENTS

Pressure

Operating Condition Low High
PSIA (TORR) PSIA (Torr)

5 PSIA (258.5 Torr)

Total Pressure 4.80 (248.2) 5.20 (268.8)

Oxygen 3.49 (180.4) 3.64 (188.2)

Water 0.15 (7.8) 0.23 (11.9)

Nitrogen 1.16 (60) 1.27 (65.7)

Carbon Dioxide 0.00 (0.0) 0.06 (3.0)

Oxygen Set Points 3.56 (183.8) 3.58 (184.8)

Nitrogen Set Point 1.17 (60.5)

10 PSIA (517.0 Torr)

Total Pressure 9.80 (506.6) 10.20 (527.3)

Oxygen 3.14 (162.3) 3.29 (170.1)

Water 0.15 (7.8) 0.23 (11.9)

Nitrogen 6.51 (336.6) 6.62 (342.3)

Carbon Dioxide 0.00 (0.0) 0.06 (3.0)

Oxygen Set Points 3.21 (165.7) 3.23 (166.7)

Nitrogen Set Point 6.54 (338.1)

14.7 PSIA (760.0 Torr)

Total Pressure 14.50 (749.6) 14.90 (770.3)

Oxygen 3.14 (162.3) 3.29 (170.1)

Water 0.15 (7.8) 0.23 (11.9)

Nitrogen 11.21 (579.6) 11.32 (585.2)

Carbon Dioxide 0.00 (0.0) 0.06 (3.0)

Oxygen Set Points 3.21 (165.7) 3.23 (166.7)

Nitrogen Set Point 11.28 (583.2)
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state 400 Hz switches on the output stages were imposed. As an alternate,

the EMI design constraints of Reference 3 were imposed.

4.1.2 Space Shuttle Orbiter Requirements

Upon redirection of the ACS to application in the Space Shuttle Orbiter,

the requirements outlined in Table 3 were derived. The requirements for

operation at 5 and 10 psia were retained, but the 14.7 psia setpoint was

emphasized since that is the nominal operating condition for the Space

Shuttle. The fail operational requirement was retained. There was to be

no in-flight repair or replacement of components, and the need for pre-

ventitive maintenance was to be minimized.

As a result of these changes, the following decisions were made:

The ECA would operate from power supplied from external 115 v, 400 Hz ac

converters, and would control external solid state switches selected for

the available solenoid valves.

The MSS would operate from a 28 vdc power source.

The oxygen channel would operate a solenoid valve to control 02 admission

in the on-off mode already selected and designed into the ECA.

A Pressure Control Panel used in previous tests would be provided by MDAC

to include the solenoid valves and pressure regulators in order to perform

the closed-loop endurance test.

The normal Shuttle Orbiter atmosphere requirements are sumnarized in

Table 4.
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Table 3

REPRESENTATIVE SPACE SHUTTLE ORBITER DESIGN REQUIREMENTS

Operational Lifetime: 100 mission; 7 to 30 days duration

Pressurized Volume: Main Cabin 2000 cu ft

Airlock 250 cu ft

Crew Size: 4

Normal Operating Pressure 14.7 psia + 0.2 psia

Avionics Bay Bleed Flow 1 lb/day each for 3 bays

Cabin Leakage 9 lb/day

Power Supply 115 v, 400 Hz ac or 28 vdc

N2 Supply High Pressure Storage

02 Supply Cryogenic or High Pressure Storage
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Table 4

SPACE SHUTTLE ORBITER ATMOSPHERE REQUIREMENTS

(lbs per day)

Oxygen Nitrogen Total

Metabolic Consumption 8 0 8

Cabin Leakage 2.25 6.75 9

Avionics Bay Vent Flow 0.75 2.25 3

Total 11.0 9.0 20.0

The nominal atmosphere composition in the orbiter cabin is given in

Table 5.

Table 5

NOMINAL ATMOSPHERE COMPOSITION

Partial Pressure Volume Weight Wt. in Cabin
Torr Fraction Fraction lbs

Nitrogen 582 .766 .744 111.0

Oxygen 165 .217 .242 36.0

Water vapor 10 .0131 .0080 1.2

Carbon Dioxide 3 .0039 .0060 0.8

Total y60 1.0000 1.0000 149.2

Average molecular weight: 28.8

Average density at 70oF: 0.0745 lb/cu. ft.
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4.2 Performance Characteristics

The Atmosphere Control Subsystem includes the equipment required to measure

the major atmospheric constituents and control the oxygen and nitrogen

additions to the Shuttle closed loop atmospheric environment. Essentially

this subsystem consists of the Mass Spectrometer Sensor (MSS) and the

Electronic Controller Assembly (ECA). The Mass Spectrometer contains

that equipment required to sample the cabin atmosphere and provide output

voltage levels proportional to major constituents. The output voltages

proportional to 02 and N2 partial pressures are monitored by the Electronic

Controller Assembly and compared with desired operational limits. When

additional nitrogen gas is required to maintain the desired level an

electrical signal is output to the Nitrogen Resupply System and a metered

amount of nitrogen gas is allowed to enter the closed system through a

control valve. In a similar fashion the controller commands the Oxygen

Resupply System to operate in a high or low mode dependent upon the 02

input voltage from the Mass Spectrometer.

4.2.1 Mass Spectrometer Sensor

The MSS is described in Reference 4. Its performance characteristics may

be summarized as follows:

The MSS is a self-contained, sealed system and is intended for use in

monitoring and/or controlling a multigas atmosphere within a spacecraft cabin.

The MSS is capable of performing direct measurements of the partial pressures

of hydrogen, water vapor, nitrogen, oxygen and carbon dioxide, as well as

providing an indication of the level of total contaminants within an

enclosed environment.

The MSS is an aluminum cylinder having basic dimensions of 7.2 inches

diameter and 12.5 inches in length. It weighs approximately 22 lbs and

requires about 15 watts of 28 vdc power. Two mounting feet are located
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at each end of the cylinder and extend 4 inches from the centerline of

the cylinder. The mounting holes are spaced 6 inches apart at each end

and 11.5 inches from end to end. Two of the mounting holes, located at

the gas inlet and valve end, are 0.266 inch diameter clearance holes. The

mounting holes at the electrical connector end are elongated holes, 0.366

inch by 0.266 inch. In one end of the cylinder are located the SAMPLE

INLET and PUMP OUT valve actuation handles, as well as the SAMPLE INLET,

SAMPLE OUTLET, and PUMP OUT interface connections. The electrical inter-

face connections necessary for the power inputs, command functions, data

output, and test requirements are located in the other end of the cylinder.

The SAMPLE INLET and SAMPLE OUTLET interface connections allow a represen-

tative gas sample to be exposed to the MSS. The system thus requires

either a pumping means to pull the sample through the line or a pressure

head to force the sample through the line. In either case, the SAMPLE

INLET line is to be connected to the sample to be analyzed.

The electrical interface connections consist of three electrical connectors,

two of which are utilized during operation of the MSS. The POWER IN con-

nector, J1, provides the interfaces for all of the input power and coxmand

functions necessary to operate the MSS. The SIGNAL OUT connector, J2,

provides the interfaces for all of the data outputs required of the MSS.

The CONTRACTOR'S TEST connector, J3, remains sealed during operation of

the MSS.

Operation of the MSS requires provision of an external control switching

and indication capability. This function was provided by an Interface

Buffer Assembly (IBA), described in Reference 5. Interconnection of the

MSS and the IBA is through connectors Jl1 and J2 of the MSS. The IBA

provides indicator lights for the following functions:

Excessive Pump Pressure: This indicates that the internal pressure of the

MSS is too great to allow starting of the internal ion pump. When present,

operation of the ion pump and MSS electronics are inhibited.
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Electronics Inhibited: May be indicated if the ion pump is operating but

the pressure is too high to allow turning on the ion source filament.

Open Loop: Shows that the MSS is operating in the OPEN LOOP mode.

Switching capability is provided in the IBA for the following functions:

Ion Pump on-off

MSS Electronics on-off

Open-Closed control mode selection

Filament Selection

The characteristics of the output signals of the MSS are given in Table 6.

Table 6

SIGNAL CHARACTERISTICS OF MASS SPECTROMETER SENSOR

Partial Output Voltage
Pressure Accuracy Sensitivity Range

Sample Constituent Range (torr) (torr) (torr/volt) (volts)

Hydrogen (H2) 0 to 3.3 + 0.66 0.66 0 to 5

Water Vapor (H2 0) 0 to 33 + 1.65 0.60 0 to 5

Nitrogen (N2 ) 0 to 660 + 13.20 132.0 0 to 5

Oxygen (02) 0 to 330 + 6.60 66.0 0 to 5

Carbon Dioxide (CO ) 0 to 23.1 + 0.70 4.62 0 to 5

Total Contaminants (TC)* 0 to 0.33** N/A N/A 0 to 5

* Monitored by measuring all constituents which give m/e ratios between

50 and 120.

**Based upon 1000 ppm full scale assuming compounds have an equivalent

sensitivity to that of Nitrogen (N 2 ) at m/e 28.
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In addition to the sample inlet and outlet connections, a PUMP OUT connection

is provided, and valve actuation handles for PUMP OUT and SAMPLE INLET.

The PUMP OUT interface connections allow the analyzer to be evacuated

to a pressure low enough to initiate operation of the ion pump, should

internal vacuum be lost. A vacuum source is then required to perform this

function.

The PUMP OUT valve actuation handle is used to expose the MSS to the vacu*

source connected to the PUMP OUT interface connection, and to seal the

analyzer from the vacuum source once operation of the MSS has been initiated.

The SAMPLE INLET valve actuation handle is used to: (a) allow a minute

portion of the sample passing through the sample line to be introduced into

the analyzer when open and (b) reduce the pressure rise within the mass

spectrometer during periods of storage, when closed.

In order to provide an accurate analysis of.atmospheric constituents including

partial pressures of each compound measured, a representative sample of the

cabin atmosphere must be provided at the MSS sample inlet port. The following

factors have an adverse effect on the MSS analysis capability:

a. Inadequate mixing of cabin gas at the inlet of the sample

collection line will provide a sample that does not have an

accurate representative composition.

b. Pressure drop in the sampling line will cause a corresponding

reduction in all component partial pressures.

c. Adsorption of constituents within the sampling line may occur.

This may be related to condensation of water vapor along the

walls of the sample line, which may in turn cause removal of

some of the carbon dioxide or trace hydrocarbons. Since

adsorption may be followed by desorption, errors both above

and below true values may be observed.
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d. Transport time from the sample line inlet may cause significant

lag in response. Maintenance of an adequate velocity in the

line and use of a sample line of short length will minimize

this effect. If lines are maintained at too high a velocity,

pressure drop along the line may become significant.

The loss of sample gas from the cabin is stated in Reference 4, Section

3.1.1.8, to be less than one-tenth (0.1) gram per hour. Analysis of the

ACS has shown that sample line flow must be considerably greater; the

excess gas is to be returned to the cabin.

The above requirements can be met satisfactorily by obtaining the sample in

a main air conditioning duct in a relatively high pressure region (e.g.,

downstream of a blower) and returning the sample to a relatively low pressure

region (e.g., upstream of the same blower, or possibly directly to the

cabin).

4.2.2 Electronic Control Assembly

The Electronic Control Assembly will consist of a nitrogen control channel,

an oxygen control channel, and associated circuitry. The nitrogen and

oxygen analog signals from the MSS will be input to the respective channels.

Each input signal will be compared with a reference setpoint voltage at

the input of an operational amplifier circuit.

4.2.2.1 Nitrogen Channel

A schematic representation of the pulse frequency modulated N2 control channel

is shown in Figure 1. The analog voltage output of the N2 partial pressure

sensor is applied at the input terminal. A precision reference voltage of

opposite polarity is applied to the other terminal of the summing network.

When the input voltage is lower than the reference voltage (indicating a

pressure below the setpoint) the error signal is integrated in the amplifier

producing a ramp voltage output having a rate of increase proportional to
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Figure 1. Schematic of Pulse-Modulated Proportional Control Channel



the magnitude of the error signal. A clamping diode is used to prevent

pressures above the setpoint causing negative integrator output. When

the integrator output reaches the preset voltage of the level detector

a pulse is produced which resets the integrator to initial conditions

and increments the 4-bit binary counter by one count. After sixteen

input pulses are accumulated the binary counter will reset to zero and

produce an output pulse which causes the ten second precision timing

circuit to start and opens the solenoid operated gas control valve.

After the ten-second period the valve will be de-energized and will close.

Typically, the solenoid valve will control gas admission from a precision

regulated source through a calibrated orifice so that the mass flow of

gas per pulse is closely regulated. Flow measurement can then be readily

accomplished by counting pulses of gas flow. This measurement method can

be very precise if desired, since it is controlled by the accuracy of

the pressure regulator (at a constant flow rate) and the 10 second timing

circuit.

As in the past, the gas admission system has been designed to operate at

a pulse frequency of about 10 per hour. This results in a solenoid

duty cycle of 1 to 36 and thereby conserves power. The flow rates involved

are normally low enough so that the size of the pneumatic components is

not appreciably increased as compared with continuously flowing systems.

More detail on system design characteristics and performance of previous

models is presented in Reference 1.

A closed loop system including the controller, the valve (and gas flow),

the cabin volume, and the sensing system exists, therefore each parameter

must be considered in determining the system accuracy. The system accuracy,

response time, and stability depend upon the open loop gain of the system.

The open loop gain is a function of the following design parameters:

a. The ECA Scale Factor which is defined as the number of pulses

allowed per unit time per unit error of nitrogen partial

pressure.
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b. The nitrogen valve flow rate and the "ON" time per pulse.

c. The cabin volume.

Analysis has shown that if loop gain is insufficient as a result of decreased

flow rates, reduced scale factor or increased cabin volume, the response

time will increase and system accuracy will degrade. Conversely, a high

loop gain can cause system instability as evidenced by oscillation or

excessive overshoot of the controlled gas partial pressure with respect

to the desired set point. This condition is more critical if transport

time of the gas sample to the Mass Spectrometer is abnormally high due,

for example, to delayed mixing of cabin atmosphere.

The system dynamics of the N2 channel are shown in Figure 2.

mLN

E t KMN (t) 148 tN(
KPN lop V t_

116 C

CONTROLLER CONTROLLER CABIN
ERROR OUTPUT

EN(t) INTEGRATION

KSN

MASS SPECTROMETER

Figure 2. Simplified Dynamic Diagram, Nitrogen Channel
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The constants noted in Figure 2 are derived as follows:

a. Controller Output

The pulse train actuating the nitrogen solenoid valve is

generated by a 4-bit binary counter from the internal pulse
Fi(t)generator. Hence, the solenoid actuation frequency is Fit)

or the controller output gain is KMN

b. Cabin

The specific density of nitrogen at standard conditions of

760 torr and 70OF is 13.8 cu. ft/lb. By the gas law, then

PN = PN 13.8 x 760 (mN(t) - mLN) dt

r pN N 10488 (mN(t) - mLN) dt (1)

c. Mass Spectrometer

The nitrogen channel calibration of the mass spectrometer is

given as K = volt/torr.
SN 132

d. Leakage Rates

Cabin leakage values are normally given in terms of total flow

rate in lbs. per day. It is necessary to determine the portion

of this leakage that is nitrogen (mLN). From Table 5 the weight

ratio of nitrogen (RN) at nominal conditions is given as 0.744.

The value for nitrogen leakage, mLN, at nominal conditions is

therefore approximately 0.375 lb per hour.
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The dynamic system shown in Figure 2 can be represented by the following

equations

dpN(t) 10,488 KMNat (t) - mLN) (2)

and

F.(t) = KP EN - K PN(t)) (3)

These linear differential equations can be combined and it can be dhown

that the solution is given by the following equation:

ENR 16 mLN -t/T
PN(t) =KSN KN PN KSN (1e N)

in which

PN(t) is the time variation of nitrogen partial pressure

ENR is the reference voltage of the nitrogen control channel

KMN is the mass flow of gas per solenoid valve pulse

KpN is the control integrator output in pulses per hr per volt of

input error signal

KSN = the sensor output in volts/torr

mLN is the leakage of nitrogen from the cabin

e is the base of natural logarithms

t is the time in hrs

TN is the system time constant, defined as

V
c

N 655.5 ~MN KPN KSN (5
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The constant 655.5 =1
16 x lbs of gas per torr pressure change per cu ft

The constant 16 is the number of integrator pulses per gas pulse.

For nitrogen, using KSN = 1/132, equation 4 becomes

PN(t) = 132 ENBN N) (torr) (6)

For the 2000 cu ft Shuttle cabin volume, and Equation 5,

2000 x 132 403T = = (hours) (7)N 655.5 x KN KPN KMN KPN

Previous experience with earlier models of the pulse modulated control

concept has indicated that a two torr difference should exist between

the design flow rate and the zero flow rate condition. This provides

good control accuracy with a minimum risk of instability. The set point

for thd N2 channel for design flowrate, in accordance with Table 2 for

14.7 psia setpoint, should be 583.2 torr and therefore for zero flow,

585.2 torr. From Equation (6), in the steady state solution for zero gas

flow (t - -, mLN = 0),

PN(t) = 132 ENR

and 585.2 = 4.433 volts (8)and ENR 132

The design value of N2 consumption is mLN = 0.375 lb per hr. As previously
noted, the design pulse frequency has been chosen at about 10 per hour.

The size of the nitrogen gas pulse was therefore selected as KMN = 0.0375

lb per pulse.
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In order to achieve the required 2 torr decrease in controlled pressure

at the design flow rate, the last term of Equation 6 must reach a steady

state value of 2.0 when mLN is the design value of 0.375 lb/per hour.

Therefore:

2112 x 0.375 2.0 torr
0.0375 KPN

or

2112 x 0.375
KPN 0.0375 x 2.0

1PN = 10560 pulses/hour/volt

The system time constant can then be found by substituting these values

in Equation 7 as follows:

T 403
0.0375 x 10570

TN = 1.018 hours

This relatively short time constant indicates how responsive the system

is with the proposed control constants. It is noted that the control

bandwidth is inversely proportional to the control system gain (K KP)

and so also is the system time constant (T). It follows that less accurate

control results in proportionately longer time constants. Achieving a

short time constant is very important in leakage detection in which the

amount of leakage is inferred from the inflow of makeup nitrogen to the

cabin.

To summarize the nitrogen channel design constants derived above,

The reference voltage for the 14.7 psia set point, ENR = 4.433 volts

The N2 flow per 10 second gas pulse, K = 0.0375 lb/pulse

The integrator output KPN = 10560 pulses/hr/volt
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When designed to these values, the partial pressure of N2 at the control

point for zero N2 flow will be 585.2 torr; the design point flow rate of

9 lb/day will be reached at a partial pressure of N2 of 583.2 torr; the

integrator pulse frequency will be 160 per hour at this condition; the

valve pulse frequency will be 10 per hour; and the system response will

be a first order lag having a time constant of 1.018 hours (for a 2000

cu ft cabin volume).

Reference voltages for the 5 and 10 psia set points can also be found,

similar to Equation 8, to be 0.498 volts and 2.593 volts respectively.

4.2.2.2 Oxygen Channel

One objective of the oxygen channel design was to use similar circuit

design concepts to those of the N2 channel. However, it is required to

provide a discrete signal, activated at a low level set point and deactivated

at a high level. The purpose of this requirement was to control a Water

Electrolysis Unit which was to furnish oxygen to the cabin, operating in

a high output mode when the discrete signal is present and a low mode

when it is absent.

The resulting design is shown schematically in Figure 3. It is essentially

a dead band control but retains the advantages of the integrating input

amplifiers which reduce the sensitivity to input noise levels and thereby

results in minimizing the dead band required for proper operation without

false actuations or chatter. Its operation may be described as follows:

If the partial pressure of oxygen is below the lower setpoint, the lower

setpoint integrator receives an error signal and provides a ramp voltage

output with a rate of change proportional to the input error. The upper

integrator, meanwhile, remains inactive since it is clamped by a shorting

diode. When the lower integrator output reaches a voltage equal to that

preset in the level detector, a pulse is generated and the integrator

reset to initial conditions. The pulse is transmitted by the channel
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select logic to the 4-bit binary counter. When 16 pulses have been received

by this counter, the output flipflop assumes the ON condition, energizing

the discrete signal output of the channel and reversing the channel select

logic to receive pulses from the upper set point integrator.

The presence of the discrete output signal causes the water electrolysis

unit to operate in the high output mode, or opens an 02 supply solenoid

valve, causing the cabin 02 partial pressure to increase. When the MSS

signal proportional to PPO2 reaches the upper set point, the upper integrator

starts to integrate as the lower integrator previously did. The operation

of the upper level detector is the same as the lower level detector,

producing an output pulse and resetting the integrator when the preset

voltage is reached. The pulse output of this level detector is now trans-

mitted through the channel select logic to the binary counter. Upon

accumulating 16 counts, the output flip-flop switches to the OFF condition,

de-energizing the discrete output and again switching the channel select

logic.

The water electrolysis unit then assumes the low output mode, or the 02
solenoid valve closed, causing the cabin pp 02 to decrease, until the

lower limit is again reached.

As a result of this operating characteristic, it is abvious that successful

control operation depends upon the ability of the 02 supply system to meet

the requirements imposed by cabin leakage and high crew metabolic loads

when in the high mode, while in the low mode the 02 generation rate must

be less than the minimum 02 consumption.

The dynamics of the oxygen channel can be described by the following

equation, similar to Equation 1,

12.08 x 760
Po(t) = Poi +  1.0 m (t) - mco) dt (9)
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in which the specific volume of 02 at standard conditions is 12.08 lb/cu ft

and the time dependent addition of oxygen is represented by m (t) which

is assumed to have one of two possible values; higher or lower than the

oxygen consumption, m oco

The nominal oxygen consumption is given in Table 4.as 11.0 lb/day or

0.458 lbs/hr. The mass spectrometer output on the 02 channel is given
1

in Table 6 as KSO -= volts/torr.

Differentiating Equation 9 gives the rate of change of pp02 , and substituting

the nominal value for m and the cabin volume V = 2000 cu ft for theco c
Shuttle Orbiter results in the following expression:

dPo t) 12.08 x 760 x 0.458  mt)
dt 2000 m co

= 2.102 o -1 torr/hr (10)
h Co

For constant 02 consumption (e.g., the nominal rate), and constant 02 supply

rate at either a high or low value, the resulting rate of change in PPO2
is seen to be a constant. This rate is shown for several typical values

of 1o(t) in Table 7.

Table 7

RATE OF CHANGE OF PPO2 FOR VARIOUS RATES OF 02 GENERATION

m (t) d P (t)

m dtco
high mode low mode torr/hr.

1.10 0.90 + 0.210

1.25 0.75 + 0.526

1.50 0.50 + 1.051

2.00 0.00 + 2.102
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For the water electrolysis unit, in which design capacity establishes the

m (t)
unit size and weight, it was planned to use values of 0 close to

co

m (t)
unity. It can be seen that, for = 1.10, the rate of pressure change

co

is quite low, requiring 4.76 hrs for 1 torr. For a gaseous or cryogenic

system, larger values of gas in-flow are more convenient since the risk

of transient errors due to high metabolic loads is reduced. For this

type of system, it is typical to select m (t) = 2 m or m (t) = 0

(an on-off system). There is no reason to restrict the high flow condition

to 2 x the nominal, but this does result in a 50% on-time for the 02 valve.

Referring back to the description of 02 channel operation, it is seen that

the operating band of ppO2 is composed of three parts. First, in order to

cause switching to HIGH mode, the ppO2 must be below the lower set point

long enough to cause 16 integrator pulses. While in the high mode, the

pp02 must increase by this amount. Second, it must increase by the amount

of the difference between the lower set point and the upper set point. Third,

it must exceed the upper set point long enough to cause 16 pulses from the

upper integrator.

Since the integrators of the 02 channel have the same design as that of the

N2 channel,

Kpo = 10560 pulses/hr/volt

The integrator output frequency, after the 02 partial pressures has reached

the upper set point, is given by

Fi(t) = KPO KSO (Po( t) - Pou)

F.(t) = 10560 (Po

Fi(t) = 160 (p (t) - Pou) (11)
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Differentiating,

d Fi(t) d Po(t)
= 160

dt dt

and substituting Equation 10,

d F.(t) (m (t)
= 160 x 2.102 o -1

(m (t)
= 336.3 o -1o (12)

m (t)
Since - is a pre-selected constant value on increasing pp 02,

co

Equation 12 can be integrated:

F.(t) = 336.3 -1 (t-tou) pulses/hr. (13)

The pulse frequency is therefore proportional to the time since crossing

the upper set point. The total number of pulses can be found by integrating

again with respect to time:

fF.(t) dt = 336.3 (t/m(t) -t)2
1 2 m ou\ co

and setting this expression equal to 16 determines the time required to

switch off the discrete output signal,

16 = 168.2 (mt) (t -t  )2
-33co
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or t -t = 16

168.2 m t

= 0.09512/(m (t) ) ('4)
\ o

Equation (14) as derived above is subject to the restriction that pp 02

is increasing, or mo( > 1. By a similar analysis it can be shown that,
m

m (t) co
when m < 1, the time required to switch to high mode after crossing

co

the lower set point is also given by Equation (14).

The time delays caused by the integration are listed on Table 8, along

with the resulting overshoot or undershoot in pp 02.

According to Table 2, for 14.7 psia operation the lower integrator set

point is to be 165.7 (2.511 volts) and the upper integrator set point,

166.7 torr (2.526 volts). For an oxygen flow of 2 m when HIGH, and

zero when LOW, the 02 channel will switch to HIGH at 165.03 torr and

remain until the pp 02 reaches 167.37 torr. The time required for this

period will be 1.11 hrs. The control will then switch to LOW, and an

additional 1.11 hrs will be required to decrease the pp 02 to 165.03 torr,

at which time the control will switch to HIGH. The 02 flowrate during

HIGH mode operation should be 0.916 lb/hr, or 22 lb/day. The above analysis

assumes that the oxygen consumption remains constant at 11 lb/day.
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Table 8

OVERSHOOT/UNDERSHOOT DUE TO INTEGRATOR TIME CONSTANT

02 Inflow Factor Rate of Pressure Switching Time Overshoot/
(t) Change t-t Undershoot

m (t) ou
o 1 torr/hr. (Eqn. 14)

mco hrs. torr

+ 0.10 + 0.210 1.007 0.211

+ 0.25 + 0.526 0.637 0.335

+ 0.50 + 1.051 0.451 0.474

+ 1.00 + 2.102 0.319 0.671

4.2.3 Packaging Considerations

When desinning to meet the SSP requirements, the ACS control unit was to

be put into an ATR relay rack housing and to include 400 Hz to dc power

converters, output devices to operate 400 Hz motor driven valves, all

interface equipment to provide signals to the data management system, and

the capability to operate in either a primary or backup position. It was

required to provide, insofar as possible, a control which was flight quali-

fiable. However, most of the auxiliary devices, including the ATR rack,

input/output connectors, power supplies, and valve switching devices,

were not flight type equipment. At this time it was decided to package

the basic controls in the Electronic Control Assembly, which was a flight

qualifiable unit, and include the other auxiliary devices, along with the

ECA, in the ATR case.

When the SSP requirements were deleted, it was decided to leave the ECA

design unchanged, to retain the power supplies, and to substitute available

valves for the 400 Hz operated valves originally planned. The auxiliary

components, not included in the ECA, were mounted in a Bench Checkout Unit,

which also served for data system interface and as a distribution point

for the various circuits involved.
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Section 5

DETAIL DESIGN

Design of the ACS included circuit design, circuit boards, packaging,

prototype testing, final design and interface definition. A significant

effort was devoted to auxiliary circuit design and interface definition

for the SSP program. However, since that program was cancelled before

final design was completed, this section will describe only that portion

of the system design related to the Space Shuttle application.

5.1 Circuit Design

Circuit design effort for the Shuttle application was primarily associated

with the ECA. It included the input circuit selection, integrating

amplifier, logic circuit, clock and timing and circuit boards. These

will be discussed in turn.

5.1.1 Input Circuit Selection

The input stages of both channels of the control are analog integrating

amplifiers. The basic circuit for such an amplifier is shown in Figure 4.

The function of the amplifier, A, is to present relatively very high

impedance to the input circuit and amplify the voltage at the input node

by a factor that approaches infinity. In the application shown, the

output voltage will have the opposite polarity to the input voltage.

The equation for an analog integrating amplifier, as shown in Figure 4,
based on the assumption that the amplifier input voltage is held at zero

by the high gain characteristic, is:

d [e. el
eo [. 

(15)
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The condition for the set point is satisfied when the integrator output

voltage is constant, and no pulses are being produced. Therefore,

ei  eR
+ - = 0

R2C R1C

and e1  R2- = -(6)
-eR  R1

C

REFERENCE R1
eR = -5.000 VDC

R2

INPUT

ei = 0-5 VDC

Figure 4. Typical Basic Integrating Amplifier Circuit

In this application, eR is fixed at -5.000 volts and set point selection

is done by varying the values of R1 and/or R2. Three set points are required

for the N2 channel. It is desirable to accomplish the set point selection

by using a minimum of circuitry external to the ECA. It was assumed

that preselected fixed resistors would be used with external shorting jumpers

to select the set point. It was preferred not to use potentiometers due

to the resulting loss in reliability.
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There are two basic methods of accomplishing the set point selection

within these ground rules. One is to use a fixed resistor on the reference

voltage and vary the resistance of the input signal leg. This is shown

in Figure 5. The other is to leave the input signal leg resistance fixed

and to vary the resistance of the reference voltage input, as shown on

Figure 6.

For the first method, in which the input signal is attenuated, the equivalent

to Equation 16 is

e R2 + R +R

(17)5.000 R

in which shorting jumpers are applied to eliminate R4 to obtain the 10 psia

set point and R3 + R for the 5 psia set point. No shorting jumper is

used for the 14.7 psia set point.

For the second method, Equation 16 becomes:

eI  Re1 R4  (18)
5.000 R1 + R2 + R3

and shorting jumpers are used to eliminate R1 for 10 psia and R1 + R2 for

14.7 psia. The 5 psia set point is obtained by removing shorting jumpers.

Since the 14.7 psia condition is most important, it was emphasized in

circuit analysis. The required resistance ratios for the N2 set points

are listed on Table 9.
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R1

-5.000 VDC 0
REFERENCE

R2

R3

1 2

R4

INPUT SIGNAL
0-5 VDC

NOTES:

(1) INSERT SHORTING JUMPER HERE FOR 5 PSIA SET POINT
(2) INSERT SHORTING JUMPER HERE FOR 10 PSIA SET POINT
(3) REMOVE SHORTING JUMPER FOR 14.7 PSIA SET POINT

Figure 5. Set Point Selection By Attenuating Input Signal

-5.000 VDC R1
REFERENCE

R2

R3 A

R4

INPUT SIGNAL
0-5 VDC

NOTES:

(1) INSERT SHORTING JUMPER HERE FOR 14.7 PSIA SET POINT
(2) INSERT SHORTING JUMPER HERE FOR 10 PSIA SET POINT
(3) REMOVE SHORTING JUMPER FOR 5 PSIA SET POINT

Figure 6. Set Point Selection By Attenuating Reference Voltage
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Table 9

RESISTANCE RATIOS FOR N2 SET POINT SELECTION

Set Point pp N2  MSS output Resistance Ratio

psia torr ei  ei/5.000

volts

5 65.7 0.498 .0996

10 342.3 2.593 .5186

14.7 585.2 4.433 .8866

In accordance with the amplifier design requirements, as explained in the

next section, a feedback capacitor value of C = 0.1/f was selected, and

the required value for reference voltage resistor is 614 K for the 14.7

psia set point. The corresponding value for the input signal resistor

is therefore 544.3 K. Using these values as a basis, the resistor values

shown in Table 10 were calculated for the three set points and two

comparative methods of input circuit design.

It is shown in Table 10 that, with the input signal attenuation method,

the input impedance of the amplifier (load on the MSS) varies between

61.2K and 544.3K over the required range of set points. Referring to

Equation 15, it is seen that this causes the integrator gain to vary over

a range of almost 10:1. The second method, of reference voltage attenuation,

was therefore selected, since it results in constant input gain as well

as constant loading of the MSS.
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Table 10

RESISTOR VALUES FOR SET POINT SELECTION - N2 CHANNEL

Input Signal Reference Voltage
Attenuation Attenuation

R1  614 K 4.4 M

R2  61.2 K 432 K

R3  257.2 K 614 K

R3  226. K 544.3 K

The same input circuit scheme was selected for the 02 channel, but there

are only two set points required: for 5 psia and for 10 and 14.7 psia,

with an upper and lower limit at each set point. By following the same

analytical procedures as with the N2 channel and using the same amplifier

characteristics, the circuit constants were derived as shown in Table 11.

It is noted that an arbitrary decision was made to design the 5 psia

set point without builtin dead-band, since the dynamic analysis previously

presented indicated that adequate protection against false actuations was

provided by the integrating amplifiers, and it was desired to evaluate

this design. The other set point was designed with a nominal dead-band

of 1.3 torr. The resulting input circuit is shown on Figure 7.
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Table 11

RESISTOR VALUES FOR SET POINT SELECTION - 02 CHANNEL

Set Point PP 02 MSS Output Resistance Resistance*
ei  ratio ohms

torr volts e1/5-000

10 and

14.7 psia Upper Limit 167.0 2.530 0.5059 1076 K

Lower Limit 165.7 2.511 0.5021 1084 K

5 psia Upper Limit 184.4 2.794 0.5588 974 K

Lower Limit 184.4 2.794 0.5588 974 K

5.1.2 Integrating Amplifiers

Figure 8 shows the complete circuit associated with the N2 integrating

amplifier. The input circuit values selected in the previous section are

shown. The 0.1 Lf feedback capacitor was selected as a convenient size for

circuit board application, using a precision polystyrene capacitor. The

amplifier output goes to a zero crossing detector which momentarily actuates

the solid state reset switch. The resulting input causes the amplifier

output voltage to go negative. The limit is imposed by the upper diode

circuit. The zener diode, D2, is an LM 103 with a 5.6 volt breakdown.

The diode D1 prevents reverse current, the 10K resistor provides a minimal

current at breakdown.

With the 5.6 v. breakdown across the sener diode and assuming a 0.6 v.

drop across diode DI, the limiting output voltage of the amplifier is

-6.2 volts. This is the initial condition for integration. The rate of

change of output voltage relative to input voltage is given by Equation 15

and is

de Ae io i
dt RC (19)

in which Aei is the input signal deviation from the set point.
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The integrator output voltage will increase to 0 and then the zero crossing

detector will reset the amplifier to -6.2 volts and produce an output

pulse. 16 of these cycles will cause a solenoid valve pulse. The design

condition is 10 valve pulses or 160 integrator cycles per hour for a

2 torr error in input voltage. This corresponds to an integrator period

of 22.5 seconds for an input error of -0.01515 volts. The rate of output

voltage change is given by 6.2/22.5 = 0.2756 volts/sec. Substituting

in Equation 19,

0.2756 = 0.01515
R x 0.1 x 10

or R = 0.01515

0.2756 x 0.1 x 106

= 0.5497 x 106 ohms

= 0.549.7 K ohms

This corresponds well with the selected value of R4 which was used in the

previous section. The corresponding gain of the nitrogen channel is given

by the ratio of integrator pulses per volt input, or

160
KN .01515

KPN = 10560 pulses/hour/volt

This is in good agreement with the required design value for KPN

The amplifier A2 is used as a zero crossing detector. The value of the

input resistor (IM) was selected on the recommendation of the manufacturer

to limit the input current. When the voltage out of amplifier Al is

negative, the output of A2 remains clamped at logic 0 by the forward drop
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across the zener diode and FFL remains in the reset state. When the output

of Al becomes greater than zero, the output of A2 becomes positive and is

clamped at logic 1 by the zener diode. On the next clock pulse, FF1 changes

state, producing an output pulse and reversing the position of the contacts

on the double pole FET solid state switch. The integrator amplifier is

reset to its initial condition during one clock pulse and FF1 is returned

to the reset state on the next clock pulse, at which time the FET switch

returns to its original state and the integrator is reset to initial conditions

(about -6.2 v.).

The amplifiers used for the upper and lower integrators, the zero crossing

detectors, and reset circuits for the 02 channel are designed exactly the

same as the N2 channel,

5.1.3 Clock Circuit

The ECA is provided with an internal clock circuit which is used for con-

trolling the binary logic elements and for timing the 10 second N2 pulse

to the solenoid valve. The clock circuit uses 2 one-shot multivibrators

which are available in a single integrated circuit flat-pack. The pulse

repetition rate is chosen so that a 12 bit binary counter can be used to

provide the 10 second timing function required to control the nitrogen

valve "ON" time. The following calculations are applicable:

12 bit counter = 212 states = 4096 counts

Repetition rate 4096 counts = 409.6 counts/second
10 seconds

T = = 2.44 msec.

Figure 9 shows the clock circuit which was selected. The pulse width of

the clock output, tw, is given by

tw = 0.32 R C (1 + 0-7) (19)
V T EXT TT
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in which the following values were chosen:

RT  = 5K

CEXT = 3300 pf

Using the dimensions noted, t is expressed in nanoseconds. For the

selected values, it is found that t = 6019 nsec rv6/sec.

The clock period, T, is also given by Equation 19, using the values of

R1 and C1 for T and CEXT . Assuming a value for C1 = 0.33,Uf and a

required clock period of 2.44 msec or 2.44 x 106 nsec previously derived,

it is found that R1 should be 22.9K.

5.1.4 Logic and Output Circuits

The output pulses from the N2 integrator circuit are accumulated in a

h-bit binary counter. Upon reaching a count of 16, a pulse to the output

flip flop turn it ON. The 10 second period established by the clock

counter circuit is then started. When completed, the output flip flop is

turned OFF. This is the signal output for the N2 channel. This signal is

compatible with TTL logic and should be interfaced with a National Semi-

conductor DM 7820A line receiver or equivalent to drive the appropriate

solid state switching circuit for energizing the solenoid valve.

The operation of the 02 channel is similar except that integrator output

pulses are received from either the HIGH or LOW channel depending upon the

status of the channel select logic and accumulated in the 4-bit binary

counter. The channel select logic will transfer pulses from the high

channel if the output flip flop is in the HIGH state, and from the low

channel if the output is in the LOW state. The output flip flop is switched

from the HIGH to the LOW state upon receipt of the 16th pulse from the

high channel, and conversely from LOW to HIGH state upon receipt of the

16th pulse from the low channel. As with the N2 channel, this output
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flip flop produces a signal compatible with TTL logic and should be inter-

faced with a National Semiconductor DM 7820A line receiver or equivalent.

5.1.5 Circuit Boards

The electronic circuits of the EAC are mounted upon two circuit cards,

each about 4 3/4 by 5 1/2 in. The boards are epoxy-fiberglass material

and are composed of four layers. One of these layers is used as a ground

plane. After fabrication they were conformal coated (not to exceed 0.010 in)

with NASA Spec. MSC 393 circuit card coating material. All wiring is to

terminal lugs. All wiring is 20 gage, teflon insulated.

5.1.6 Component Selection

Wherever possible, all components in the ECA are of known high reliability

and procurred in accordance with MDAC Source Control Drawings. Where

necessary because of lack of availability in accordance with schedule

requirements, MIL-STD components were substituted. Major components where

this was necessary included the 3 Deutsch output connectors on the ECA and

the 3 0.1/If capacitors used for feedback in the integrating amplifiers.

5.2 Prototype Testing and Final Design

Prototype circuit cards were built and tested to evaluate the circuit design

and prove out the circuit board layouts. These boards were subjected to

functional tests and high and low temperatures. Several minor changes to

circuit board layout were made as a result of these tests but they generally

verified satisfactory performance in all respects.

Corrections were made to design drawings and the final circuit cards

were made from second generation prints, in accordance with normal

manufacturing procedures. As a result, there were very few corrections to

be made in the final boards.
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5.3 Set Point Adjustment

As explained previously, it was intended to provide all required set-point

circuit components on the boards by selecting proper resistance values,

and determining the proper set point by inserting shorting jumpers in

external leads to the ECA. Early in the Functional Checkout it was found

that the selection of resistors had not resulted in adequate accuracy of

control. It was found that resistive jumpers could be used in place of

shorting jumpers, for the set points in which jumpers are used, and

correction of the set point could be obtained. This is possible for the

10 and 14.7 psia set point of the N2 channel and the 5 psi set point of

the 02 channel. A decrease in set point will result, depending on the

jumper resistance. The input circuits were analyzed to determine the

effect of jumper resistance and the results are presented in Table 12.

On the N2 channel it was found that the set point will decrease one torr

for each 3100 ohms at the 10 psi set point and for each 1066 ohms at the

14.7 psia set point. On the 02 channel, at the 5 psia set point, a

decrease of one torr requires 1750 ohms for the low limit integrator and

1820 ohms for the high limit integrator.

Table 12

EFFECT OF EXTERNAL RESISTANCE ON CONTROL SET POINT

Oxygen ChannelN Channel Set Point Oxygen Channel
Jumper Channel Set Point2 5.0 psia Set Point

Jumper

Resistance 10.0 psia 14.7 psia Low Limit High Limit

K ohms Volts Torr Volts Torr Volts Torr Volts Torr

0 2.602 343.5 4.432 585.1 2.794 184.4 2.794 184.4

5 2.589 341.8 4.397 580.4 2.781 183.5 2.781 183.5

10 2.577 340.2 4.361 575.7 2.768 182.7 2.768 182.7

15 2.565 338.6 4.327 571.1 2.757 182.0 2.757 182.0

20 2.553 337.0 4.293 566.7 2.746 181.3 2.747 181.3
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5.4 Interface Definition

The interfaces between the ACS and related.equipment are described in

detail in Reference 6, and will be summarized in this section.

5.4.1 Mass Spectrometer Sensor

The Mass Spectrometer Sensor is contained in a cyclindrical package 7.2

inches in diameter by 15.72 inches in length. Feet are provided for

support in the normal operating position.

Input power and control functions are supplied to the MSS through the

electrical connector labeled Jl. Connections to the Mass Spectrometer

Sensor Input Connector Jl are accomplished by interconnection with the

Perkin Elmer Interface Buffer assembly. The output signals from the MSS

are obtained from connector J2 on the MSS assembly. The output connector

is Microdot P/N MD5300H9-19P-N and mates with cable connector MD5306E9-19S-N.

Pin assignments are as shown in Table 13.

The MSS must be supplied with a gas sample representative of the cabin atmos-

phere through a sampling line having adequate velocity to minimize transient

time without excessive pressure drop. Typically a 1/4 in OD tube has been

used, with a length of about 20 ft and a flow rate of 100-200 cc/min. Flow

through the tube may be induced by locating the intake downstream of an

air conditioning blower and returning the sample to the blower inlet or

to the main chamber.

The output signal sensitivity and accuracy of the MSS has been previously

presented (Table 6).

-51-



TABLE 13. MASS SPECTROMETER ELECTRICAL INTERFACE

Connector Designation: J2

Connector Part Number: MD 5306E9-19S-N (Microdot)

Use: Output Connector, Mass Spectrometer Sensor

Pin No. Function Characteristics

1 Signal return Isolated return to MSS

2 H2 Partial Pressure 0-5 VDC, Source Impedance 10 ohms

3 H20 Partial Pressure 0-5 VDC, Source Impedance 10 ohms

4 N2 Partial Pressure 0-5 VDC, Source Impedance 10 ohms

5 02 Partial Pressure 0-5 VDC, Source Impedance 10 ohms

6 C02 Partial Pressure 0-5 VDC, Source-Impedance 10 ohms

7 Total Hydrocarbons 0-5 VDC, Source Impedance 10 ohms

8-19 Not Used No Connection

5.4.2 Interface Buffer Assembly

The Interface Buffer Assembly was used with the MSS and was built by Perkin

Elmer Corporation. It is described in Perkin Elmer Specification 342927.

It is primarily a control unit and signal buffer for the MSS. The control

unit portion provides power mode, control loop mode and filament selection.

All power is provided from external sources to the Buffer Power Input

Connector. Operation of the IBA in this program did not use the System

Test Unit (STU); therefore, all operation was in the LOCAL mode. The

Buffer amplifiers were not used so that the + 15 vdc power input was not

required. The MSS output signals were patched from the buffer amplifier

"input" taps to corresponding taps on the face of the BCU. The IBA there-

fore introduce a 1000 Ohm resistor into the output of each MSS channel.
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5.4.3 Electronic Control Assembly

The ECA is contained in an aluminum housing 7.0 x 6.0 x 2.25 inches.

Mounting of the ECA is accomplished by using four (4) #10 Hex Bolts

(Part No. AN-32A) and four (4) 0.25 inch spacers (Part No. NAS 43DD3-16).

The mounting hole pattern is 0.25 inch holes or nut plates in a 4.0 inch

x 5.5 inch pattern. Three electrical connectors are provided on the ECA,

for input signals from the MSS, power input, and output signals. Pin

assignments are given in Reference 6.

Input signals to the ECA are provided through the connector Jl. The Jl

connector is MDAC controlled part number ST201RlONl9SN. The cable mounted

mating connector is MDAC Number ST186RlONl9PN which is the high reliability

equivalent of Deutsch part Number RTK06-10-19PN. The impedance looking

into the nitrogen or oxygen inputs is a function of the range selected and

in all cases exceeds 1 x 105 ohms.

Electrical power is supplied to the ECA through connector J2. The J2

connector is a MDAC controlled part with the designation ST201R8N7PN. The

cable mounted mating connector is designated STl86R8N7SN. This is a high

reliability equivalent of Deutsch Part Number RTK06-8-TSN.

Power requirements of the ECA are + 15 vdc and + 5.0 vdc. The + 15 vdc power

source must be capable of supplying 20 mA from each source, with a tolerance

of 0.15 vdc. The 5.0 vdc power source is required to provide 100 mA.

Combined line and load regulation must be 0.5% or better. The RMS value of

ripple voltage must be less than 5 mv. The output signals from ECA are

accessible from the J3 connector. This connector is MDAC Number ST201R1lON9PN

which mates with a cable terminated with a MDAC Number ST186R10N19SN or the

equivalent Deutsch Number RTK06-10-19SN.

The following is a discussion of the output signals on connector J3 and include

a description of the signal characteristics as applicable:
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a. Change of operation of the nitrogen channel for total pressure

of 5.0, 10.0 and 14.7 PSIA is controlled by pins 1, 2 and 6 of

J3. For 5.0 PSIA total pressure, pins 1 and 2 are not connected

(open circuit). For 10.0 PSIA total pressure operation, jumper

pin 2 to pin 6 (Reference Voltage). For 14.7 PSIA total pressure

operation, remove the jumper from pin 2 and jumper pin 1 to pin 6.

b. The nitrogen integrator reset pulse is provided on J3-4 for test

purposes. This signal is buffered by a TTL gate whose output is

not used internally, however, it should not be connected to direct

wire interconnections of more than 6 inches. When the logic level

of this output is low the voltage presented to the nitrogen

channel is integrated. A reset pulse is indicated by a transition

to logic one and back to low. Under nominal conditions this pulse

recurs every 22.5 seconds. The pulse width is 2.44 milliseconds

(one clock time).

c. The nitrogen integrator output is connected to J3-5 and is used

for test purposes. A 10K isolation resistor is connected internally

to prevent damage or degradation due to inadvertent shorting of

this signal to ground. The output voltage is a ramp voltage changing

from about -6.0VDC to OVDC in the nominal 22.5 second integration

period.

d. The upper oxygen integrator channel set point is changed by jumpering

J3-9 to J3-7. This provides the required 02 partial pressure upper

limit for operation at 5.0 PSIA total pressure. When operated

without the jumper, the setting will be correct for 10 and 14.7 PSIA

operation.

e. The lower oxygen integrator channel set point is changed by jumpering

J3-8 to J3-10. This provides the required 02 partial pressure

lower limit for 5.0 PSIA total pressure. As above, the 10 and

14.7 PSIA set points are obtained without the j3-mper.
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f. The oxygen resupply control signal is output on J3-11 and J3-12.

The source of this signal is a TTL differential line driver in the

ECA. Several types of transmission lines and terminations may

be used.

The choice is dependent upon the length of the line. For this

application a pair of No. 26 or 28 wires approximately 20 feet

in length with thin insulation twisted about 30 turns per foot

is recommended. The terminating device is the National DM7820A

connected as a differential line receiver using its internal

terminating resistor.

g. The nitrogen resupply control signal is output on J3-13 and J3-14.

This source of signal is also a TTL differential line driver as

described in (f) above. Transmission line and termination should

be handled as described above.

h. The oxygen channel lower set point integrator output is connected

to J3-15 through a 10K isolation resistor. This voltage is brought

out for test purposes only.. The characteristics of this signal is

a ramp output voltage varying from -6 volts to ground. When the

voltage crosses zero it is rapidly reset to the -6.0 volt level.

The repetition rate is a function of the input to the channel.

i. The oxygen channel upper set point integrator is output on J3-16

through a 10K resistor. This voltage is similar to the lower

oxygen integrator output except the ramp voltage varies from

approximately +6.0V to 0 when the oxygen partial pressure input

is greater than the upper set point.

J. J3-17 is used for test purposes and is connected directly to the

+5.OVDC logic supply input.
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5.4.4 Bench Checkout Unit

The Bench Check Unit (BCU) has been designed to be used in the checkout and

test of the Atmosphere Control System. Although it has not been developed

specifically as part of the ACS it may be used to provide power supply

voltages and valve interface circuitry at the option of the user. Therefore

a description of the unit and its interfaces is included.

The BCU is contained within a standard commercial enclosure and provides test

point access, power converters, valve drivers, and a method to select the ACS

total pressure operation point (5.0, 10.0 or 14.7 PSIA). The external

dimensions are approximately 17.5" x 18" x 6".

Test points are brought out to front panel banana jacks. The following is

a discussion of the front panel test points, which is shown on Figure 10:

a. Mass Spectrometer Outputs - These seven test points are directly

wired to the Mass Spectrometer Outputs. All signals are 0 to 5 VDC

level signals with low impedance output (10 ohms are less).

b. ECA Inputs - The inputs to the Electronic Control Amplifier Oxygen

Channel, nitrogen channel and common are brought out to three

banana jacks. These jacks are located directly below the MSS

outputs so that jumpers may be inserted to connect the MSS outputs

to the ECA inputs. When the jumpers are removed, inputs from an

external precision voltage source may be substituted for calibration

or test purposes.

c. ECA Test Signals - This group of test points provide access to

those ECA output signals discussed in Paragraph 5.4.3 above.

These terminals are used primarily for test and calibration purposes.

d. N2 Range - The purpose of bringing these four points to the test

panel is to provide a remote method of changing the nitrogen

channel input for operation at selected total pressure. With no

jumper in place the nitrogen channel will provide proper operation
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for 5.0 PSIA total pressure. For operation at selected total

pressure of either 10.0 PSIA or 14.7 PSIA a jumper is placed

between the appropriate terminal and the reference terminal.

e. 02 Range - These test points provide a method of remotely changing

oxygen channel operation for 5.0 PSIA total pressure. Jumpers are

installed from the reference voltages to the upper and lower test

points for correct 02 partial pressure at 5.0 PSIA.

f. Power Test Points - The +5 VDC, +15 VDC, -15 VDC and power ground

are brought out to these test points for monitor purposes.

The front panel also includes fuses for the +5 VDC and the + 15 VDC power

supplies, a power switch for the 115 V 400 Hz ac power input, and 3 light

emitting diodes (LED). From left to right the first light indicates when

the N2 solenoid valve is energized, the second when the 02 solenoid valve

is energized and the 3rd flashes each time an N2 reset pulse occurs. The

02 light stays on until the 02 level reaches the set point. This duration

can vary between a few minutes and a few hours. The N2 light is normally

on only 10 seconds. The on period of the flashing light is about 0.2 seconds.

Electrical connections are provided on the rear panel of the BCU, shown on

Figure 11. The connectors and their functions are described in Table 14.

In addition there are provisions for input of 115 VAC, 400 Hz for the

precision power converters and 115 VAC, 60 Hz for operating the 02 and N2
solenoid valves. Details of pin assignments are given in Reference 6.

In addition to the interconnecting wiring provided in the BCU, there are

also two power converter modules and drivers for the 02 and N2 solenoid

valves. The power converter modules transform 115 V 400 Hz to +5 VDC and

+ 15 VDC respectively. These DC voltages are used to supply power to the

ECA.
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The logic level signals from the ECA oxygen and nitrogen channels are

received by Integrated Circuit Line Receivers. The output of the line

receivers are used to drive solid state relays which control the operation

of the solenoid valves. The present configuration of the BCU provides

control of 115V 60 Hz solenoid valves. The output solid state relay can

be changed to drive other types of valves if desired.

Table 14

ELECTRICAL CONNECTORS OF THE BENCH CHECKOUT UNIT

Connector Manufacturer Part Number Function

Jl Deutsch RTK00-10-19 SN MSS signals for 02 and N2to the ECA

J2 Deutsch RTKOO-8-7PN Power to the ECA

J3 Deutsch RTK00-10-19PN Signals from the ECA

J4 Bendix PT07TA-12-10S Power output to 02 and N2valves

J5 -- MD 5300H9-19P-N Signals from MSS

J6 -- DCMA 37S-A106 Signals to Data System

5.h.5 Pressure Control Panel

A Pressure Control Panel (PCP) was furnished by MDAC for use in testing the

ACS, providing the pulse counters and pneumatic components required for 02

and N2 flow control. The unit contains 2 solenoid valves that are driven

by the signals from the BCU. Each solenoid is connected as shown in Figure 12.

A pressure regulator maintains a fixed, known pressure high enough to produce

sonic flow through the metering orifice when the solenoid valve is opened.

The sonic flow condition yields a constant flow rate through the orifice.

For this test the upstream pressure was regulated at approximately 20 psig.

The quantity of gas admitted per pulse is then determined from the regulated

upstream pressure and the timed pulse duration. The electric counter, in

parallel with the solenoid valve coil, registers one count per pulse. Total

gas usage can be found by multiplying the number of pulses times the quantity
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of gas admitted per pulse. An additional pair of counters is provided for

counting pulses of the 02 and N2 solenoid valves when adequate gas pressure

is not available. The PCP includes pressure switches in the 02 and N2 lines

to stop gas flow and switch counters when supply pressures are low, and

indicating lights to show the operating mode. The PCP operates on 28 vdc

for the logic circuitry and 115V 60 Hz power for the solenoid valves.

CONTROL
SIGNAL

PRESSURE 
COUNTER

GAS SONI 
V E

IN

METERED
GAS OUT

PRESSURE
GAUGE

Figure 12. TYPICAL PNEUMATIC CIRCUIT
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Section 6

TEST EQUIPMENT AND PROCEDURES

Test procedures included a functional checkout test, high and low temperature

operation, and a 60 day endurance test. The functional checkout test pro-

cedures were performed on the ECA, using a precision voltage source to

simulate inputs from the MSS. The endurance test was performed in a closed

chamber simulating the Space Shuttle cabin volume, and the MSS was used to

measure atmosphere composition. The test was performed in a closed loop

mode, with commercial high pressure storage for 02 and N2 . The equipment

and procedures for these tests are described in the following sections.

6.1 FUNCTIONAL CHECKOUT TEST

The Functional Checkout Test was performed on the ECA to verify that basic

functional requirements were met. The test was first performed upon receipt

of the unit from production, then repeated during high and low temperature

exposure, prior to start of the 60 day endurance test, and upon completion of

the endurance test. The Functional Checkout Test used a variable precision

power source to provide input signals to the ECA, substituting for the 02
and N2 partial pressure signals of the MSS. The test setup and procedures

are relatively simple and are recommended for any subsequent check of the

unit prior to placing it in operation.

6.1.1 Functional Checkout Test Setup

The BCU, previously described, was used as a test adapter to perform the

functional checkout test on the ECA. In addition, the following commercial

instrumentation was required:
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QtyType Model

1 Precision Power Source (PPS) Power Design Model 2205A

1 Digital Voltmeter (DVM) H. P. 3440A w/3443A Plug-In

1 Stopwatch

A 115V 400 Hz source was required to provide power to the BCU during the

performance of these tests. A 115V 60 Hz source was required to provide

power for test equipment.

6.1.2 Functional Checkout Test Procedure

During the Functional Checkout Test the procedure described in detail in

Section 4.4 of Reference 7 was followed. This procedure determined the

threshold voltage of each of the three input integrating amplifiers (02 LOW,

02 HIGH, and N2 ) at each set point of the ECA. There are two set points for

each of the 02 integrators, since 10 and 14.7 psia total pressures require

the same 02 partial pressures, and three set points for the N2 integrator.

The checkout test also measured output of the +15, -15 and +5 Vdc power

supplies in the BCU, and the -5.00 Vdc precision power supply in the ECA

which establishes the set point reference. It verified that 16 counts of

each 02 integrator are required to change the output state of the 02 channel.

The integrator gain and time constants were shown to be within limits when

a predetermined error, equivalent to a 2 torr difference in input signal,

was applied to each. Finally, the duration of the N2 valve ON pulse was

measured. Data was recorded on forms like that shown in Figure 13. Nominal

required readings and allowable tolerances are indicated on Figure 13.

6.2 HIGH AND LOW TEMPERATURE TESTS

Following the initial functional test, the ECA was subjected to tests under

high and then low ambient temperature conditions. The high temperature

test was performed at 100 to 105OF; the low temperature test at 35 to 40 0 F.

The functional checkout test procedure was repeated after stabilization at

each temperature. The same tolerances were applicable as at room temperature.

-62-



ECA FUNCTIONAL TEST DATA SHEET

Engineer Quality Assurance Date Time

Test Identification: Functional High Temperature Low Temperature (check one)

Reference (1) Nominal Measured
Paragraph Value Tolerance Value

4.3.4 Power Supply DC voltages from BCU, TP27 +15 VDC +0.15 VDC
Power Supply DC voltages from BCU, TP28 -15 VDC +0.15 VDC
Power Supply DC voltages from BCU, TP26 +5 VDC +0.2 VDC

4.4.1 Reference Voltage from ECA -5.000 VDC +0.015

4.4.2.2 02 Channel Low Set Point Integrator Threshold, 5.0 Psia 2.794 VDC +0.030 VDC

4.4.2.3 02 Channel Upper Set Point Integrator Threshold, 5.0 Psia 2.794 VDC +0.030 VDC

4.4.2.4 02 Channel Upper Set Point Integrator Threshold, 10.0 and 2.529 VDC +0.030 VDC
14.7 Psia

4.4.2.5 0 Channel Lower Set Point Integrator Threshold, 10.0 and 2.529 VDC +0.030 VDC
14.7 Psia

4.4.2.6 02 Channel Reset Logic Count for Lower Integrator 16 None

4.4.2.7 02 Channel Reset Logic Count for Upper Integrator 16 None

4.4.2.8 02 Channel Upper Integrator Period for 2 Torr Error 11.25 Sec +2 Sec

4.4.2.9 02 Channel Lower Integrator Period for 2 Torr Error 11.25 Sec +2 Sec

4.4.3.2 N2 Channel Integrator Threshold, 5.0 Psia 0.498 VDC +0.022 VDC

4.4.3.3 N2 Channel Integrator Threshold, 10.0 Psia 2.593 VDC +0.022 VDC

4.4.3.4 N2 Channel Integrator Threshold, 14.7 Psia 4.433 VDC +0.022 VDC

4.4.3.5 N2 Channel Integrator Period for 2 Torr Error 22.5 Sec +4 Sec

4.4.3.6 N2 Valve ON Period 10 Sec +0.5 Sec

ECA Case Temperature: Start of Test oF

End of Test OF

FIGURE 13 - SAMPLE ECA FUNCTIONAL TEST DATA SHEET



The ECA was installed in a Sears Coldspot Refrigerator equipped with a

Precision Scientific Company Refrigerator Control, Catalog Number 31211,

for performance of the high and low temperature tests. The signal gen-

erating unit and data collecting and recording equipment was located outside

the chamber. The chamber temperature was raised to 1000F (+5, -00F) and

held until stabilization was reached, as indicated by achieving an ECA

case temperature change of less than 20F per hour. The set points for the

oxygen and nitrogen channels were determined by repeating the Functional

Checkout Test. Data was recorded as shown on Figure 13. ECA case temp-

erature was recorded at the start and end of each test.

The test chamber temperature was then reduced to 400F (+0, -50F) and held

until stabilization was reached. Stabilization was indicated by achieving

an ECA case temperature change of less than 20F per hour. The set points

for the oxygen and nitrogen channels were determined by repeating the

Functional Checkout Test. Data was recorded as shown on Figure 13. ECA

case temperature was recorded at the start and end of the test.

6.3 60-DAY ENDURANCE TEST

The ECA was then installed in a closed chamber and used to control the

chamber atmosphere during a 60 day Endurance Test. The MSS was installed

external to the chamber. An atmosphere sample line was used to provide a

continuous flow of chamber atmosphere to the MSS sample port. The analog

outputs signals of the 02 and N2 channels of the MSS were then used as

inputs to the ECA. The discrete output signals of the ECA were used to

control solenoid valves in the pressure control panel (PCP), modulating the

gas input to the chamber. A micrometer valve was used to produce a controlled

leak to simulate cabin leakage. Operation included 6 days at 5 and 10 psia

respectively at nominal leakage, followed by operation at a variety of

leakage conditions at 14.7 psia for the remaining 48 days of the test.

During this period the ACS was required to hold the 02 and N2 partial

pressures within the limits specified in Table 2. Measurements were made
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to demonstrate control response times when changing from one leakage level

to a higher or lower level as well as determination of long term accuracy.

During the endurance test it was possible to simulate only cabin leakage,

but not metabolic 02 consumption. For purposes of test evaluation a nominal

flow rate for Space Shuttle cabin leakage of 12 lbs per day was selected,

of which about 9 lbs per day would be N2 and 3 lbs per day, 02. The 02
system would therefore be required to provide approximately 6 lbs per day

in the high mode and zero flow in the low mode.

Previous system analysis has indicated (Reference 2) that dynamic response

time of the ACS is a significant operating parameter, especially in leakage

measurement studies. To obtain dynamic similitude during the endurance test,

it was necessary to operate at actual flow rates which were proportional

to Shuttle flow rates in the same ratio as the test chamber volume was to

the Shuttle Orbiter cabin volume. The Shuttle vehicle has an expected

pressurized volume of about 2000 cubic feet. Using the data and equations

developed in Reference 2 for a 14.7 psia total pressure oxygen/nitrogen

atmosphere and a 12 pound per day nominal atmospheric leak rate, the time

constant for the system is 1.031 hours. This is the system transient response

to a change in input to reach 63.2 percent of its eventual steady state

value. Calibration of the test chamber used in this test showed that it had

a volume of approximately 876 cubic feet.

The condition of dynamic similarity can then be met if the test flow rates

are equal to 0.438 times the simulated flow.rates. Table 15 lists the resulting

leakage values for the values of simulated Shuttle leakage and cabin pressures

that were planned for the Endurance Test.

Although the Shuttle is not intended to operate at the 5 and 10 psia set

points, it was necessary to check ACS performance at these conditions to

conform with design requirements, and it was arbitrarily decided to operate

at the same cabin leakage as the nominal value for 14.7 psia set point.
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Table 15

RELATIONSHIP OF ENDURANCE TEST LEAKAGE RATES

TO SPACE SHUTTLE CABIN LEAKAGE

Total Pressure Simulated Shuttle Endurance Test
Set Point Leakage Rate Leakage Rate
psia lb/day lb/day

Total N2  02 Total N2  02

5 12 3.1 8.9 5.26 1.36 3.90

10 12 7.8 4.2 5.26 3.42 1.84

14.7 2 1.5 0.5 0.88 0.66 0.22

14.7 6 4.5 1.5 2.63 1.97 0.66

14.7 10 7.5 2.5 4.38 3.29 1.10

14.7 12 9.0 3.0 5.26 3.94 1.31

14.7 14 10.5 3.5 6.13 4.60 1.53
14.7 18 13.5 4.5 7.88 5.91 1.97

At the design point the ACS will produce 10 N2 valve pulses per hour. It

was intended to use the same frequency at the design leakage value for the

endurance test. Each N2 pulse should therefore admit the following quantity

of N2 to the chamber.

3.943.94 0.0164 lb

Since, at the design condition, the 02 valve flow rate should be approximately

2x the required flow rate, the metering valve should be set for approximately

7.80 lb/day at the 5.0 psia set point, 3.68 lb/day at 10.0 psia, and 2.62

lb/day at 14.7 psia.
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6.3.1 Endurance Test Setup

Figure 14 shows the test facility configuration that was used for the endurance

test program. The figure shows in block diagram format, the electronic

control assembly, the laboratory failities used to support the test and

the mechanical and electrical interfaces existing between major assemblies.

Power for the test facility included 28 Vdc, 115 Vac at 60 Hz and 115 Vac

at 400 Hz. All other power requirements were provided from sources internal

to the equipment being tested or supporting the test. Excess gases simulating

a space vehicle leak rate were vented into the laboratory through a wet

test meter. Pressurized sources of oxygen and nitrogen were available to

make up the simulated leakage of gases.

The data management system automatically monitored, recorded and printed 16

channels of data pertinent to the performance of the ECA. The test stand

and integral sensors were designed to monitor the ECA continuously without

human surveillance. Engineers observed performance of the test, checked

calibrations, made adjustments and repairs, changed data tapes, analyzed

data collected, prepared documentation and otherwise maintained system

operation only during normal working hours (first shift).

The principal components of the data acquisition system were a signal condi-

tioning unit, a status monitor, multiplexer unit, low speed data system,

magnetic tape recorder, PDP-15 computer and teletype unit. Figure 15 pre-

sents a simplified block diagram of the data acquisition system. A test

measurement list of parameters monitored by the data acquisition system is

shown on Table 16.

The signal conditioning assembly translated low level test parameters into

measurable voltages. It included a 1500 F temperature reference junction

and a strain gage balance-normalize and calibration panel and auxiliary

equipment necessary to set up and standardize (calibrate) the measurement.
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TABLE 16 TEST MEASUREMENT LIST

Data
System

Mensurement Channel Measurement
Code Assignment Measurement or Element Title Units Remarks

BVN01 C-180 + 5 VDC Power Supply VDC

BVN02 C-181 + 15 VDC Power Supply VDC

BVZOO C-182 Spare

BVN05 C-183 + 28 VDC Power Supply VDC

MVN01 C-184 Balance normalize and calibrate power VDC
supply

V-G01 C-185 Calibration Pressure psig

0 BVHO1 C-186 N2 supply regulated pressure psig

BVHO02 C-187 02 supply regulated pressure psig

BVGO6 C-188 Test chamber pressure torr

BVA01 C-189 Test chamber temperature Deg F

MVAO1 C-190 Calibration temperature Deg F

BVZO1 NR TTY cable --- Interface status

BVZ02 NR Patch cable --- Interface status

BVW01 SM-A2-4-01 N2 Logic Integrator Status --- Pulse counting

BW02 SM-A2-4-02 02 Valve Status --- Pulse counting

BVW03 SM-A2-4-03 N2 Valve Status --- Pulse counting

BVWO5 SM-A2-4-05 Sample rate select A --- Identify data selection
rate



TABLE 16 TEST MEASUREMENT LIST (Cont.)

Data
System

Measurement Channel Measurement
Code Assignment Measurement or Element Title Units Remarks

BVWO6 SM-A2-4-06 Sample rate select B --- Identify data selection
rate

BVGOl 0-401XOl Mass spectrometer H12 torr

BVG02 0-451X01-. Mass spectrometer H20 torr

BVG03 0-501XOI Mass spectrometer N2  torr

BVGOL 0-551X01 Mass spectrometer 02  torr

BVG05 0-601X01 Mass spectrometer CO2  torr

BVNO4 0-651X01 -5VDC Reference Voltage VDC



The status monitor is a multi-user device that converts contact closures

to computer compatible words. System software responded to these inputs

under program control.

The multiplexer (MUX) is a 100 channel data acquisition system in which analog

data are convered to binary values that are input to the PDP-15 computer

via the Low Speed Digital System (LSDS). Ten channels of MUX data are encoded

into one LSDS data frame. Resultant raw data words are processed by active

PDP-15 software.

The LSDS consists of a modified version of a Systron-Donner Model 160E6

Data Acquistion Console which can receive data from 700 analog input channels.

The LSDS scans, digitizes and records the data on a magnetic tape. These

data consist of subsystem status of system pressures, temperatures, voltages

and valve positions.

A PDP-15 Computer and Peripheral equipment were used in a time-sharing mode

with other test programs in the laboratory to receive raw data from the LSDS

and Status Monitor, process it, and provide data print-out on a teletype

printer located in the test area. Data print-outs were normally provided

each hour and all valve operations were recorded except for relatively short

periods when the computer was down for maintenance. The test engineer could

also obtain data print-outs every ten minutes to record transients or on

command when desired.

In addition to automatically recorded data, manual records were made at least

twice each working day to provide information not recorded on the automatic

system, to back that system up during non-operational periods, or to record

changes in test operating conditions. A sample endurance test log sheet is

shown in Figure 16. Typical of data to be recorded includes the time, date,

and elapsed time of the test. Also the parameters listed on Table 17 were

recorded. The readings of the pulse counters on the PCP were entered. Settings
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-ELECTRONIC CONTROL ASSEMBLY DATA SHEET

TYPE OF TEST ENGINEER_ PACE NO.

TIME OF DAY SYSTEM ETR DATE

PRESSURES

TE INMPE PATURES 28V POWER SUPPLY
cHA,,,3EC (t) JAMS3IE,'T ( ) VOLTS6 AMPS.

FLOWMETE PS,
ox vsE AI ./1f M 5 S W774//

UA A.,. . T/G PS -/, .-rl A,, rS -/A/,4/. FT.s. rim

COUNTERS
/h /Vo lIe/4A L Oz NOea-/AL O OFF A/ O FFi

METER VALVE SET TING
0. Fz ov/ , FLOV/ SS BP/ISS ICA/ A T CA 4G.EAA

COM MENTS

FIGURE 16 SAMPLE OF ENDURANCE TEST DATA SHEET
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Table 17

TEST SYSTEM INSTRUMENTATION AND EQUIPMENT LIST

Data System
Measurement
Identifi- Measurement Measurement Measurement Accuracy

Measured By cation Type Units Range Tolerance Notes

Precision Wet -- Leakage gas Liters 3000 liters +1.0% Simulated
Test Meter - flow 180 liters/hr shuttle
Precision leakage
Scientific Co.

Pressure gauge - BVHO1 N2 pressure psig 0-30 +5% F.S.
Marsh Instru-
ment Co. BVH02 02 pressure psig 0-30 +5% F.S.

S Abosolute pressure BVGO6 Chamber torr 0-800 +0.1%
-Wallace & Tiernan pressure F.S.
Model 1500

Linurass Flow- N--2 flow $ 0-100% +2% F.S.
meter - Technol- 0.3 lbs/min
ogy/Versatronics
Inc. .'G 10-12T -- 02 flow % 0-100%. +2% F.S.

0.6 lbs/hr

Victor Eqauipment -- N2 tank psig 0-4000 +2% F.S.
Company pressure
1424-0048

1424-0057 - 02 tank psig 0-4000 +2% F.S.
pressure



of the micrometer valves for 02 flow control and cabin leakage were recorded.

Other valves did not provide a visual indication of position; although the

data sheet provided for their entry, readings of those valve positions were

not possible. The test log sheets were also used to record pertinent comments

on the test operations, changes that were made, and other data for backup of

the automatic recording system.

6.3.2 Endurance Test Procedures

During the first period of the test the selected set point was 5.0 psia total

pressure, requiring a nominal 02 partial pressure of 184.3 torr and N2 partial

pressure of 62.8 torr. The chamber was initially pumped down (July 25, 1973)

until both partial pressures were lower than the desired set points. A total

pressure of 73.0 torr was reached, and the control was energized. Manual

addition of oxygen was required to reach the desired value due to the low

inflow rate of 02 when under automatic control. After stabilization the test

was continued for the planned 6 days. It was found, however, that the inlet

lines for 02 and N2 addition discharged gas near the sampling part for the MSS.

Also, it was suspected that leakage existed in some of the external lines of

the system. Accordingly, after the 6-day period was completed at 5 psia, the

chamber pressure was returned to sea level on August 1, to correct the sample

line location and perform leakage checks.

The test was restarted after 3 1/2 hours shutdown in a manner similar to

the initial start. The desired nominal operating conditions were: total

pressure, 10 psia or 517 torr; 02 partial pressure, 166.2 torr; and N2 partial

pressure, 339.4 torr. The initial pump-down was to a total pressure of 439

torr and manual addition of 02 was again required to achieve stable 02

operating conditions in a reasonable time. The planned six days at this

operating condition were completed at noon on August 7.
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Since the subsequent operation at 14.7 psia required only a change of

nitrogen partial pressure, it was decided to perform the transition under

control by initiating a step change in set point at the end of the previous

period of 10 psia operation. The nominal set points were to be: total

pressure, 14.7 psia or 760 torr; 02 partial pressure, 166.2 torr; and N2
partial pressure, 582.4 torr. Of course, since only 02 and N2 partial

pressures were controlled and there was no source of CO2 or water vapor in

the chamber, it was expected that total pressures would be somewhat lower

than 760 torr due to the absence of these gases.

The balance of the test was completed at the 14.7 psia set point. A

schedule of changes in leakage was adopted to provide increasing and

decreasing step changes of several sizes. Transient performance was measured

following each change, and sufficient time (4 to 7 days) was allowed between

each change to allow stabilization and recording of statistically significant

steady state performance data.

During the endurance test, special procedures were followed to obtain cali-

brations of chamber volume, N2 gas pulse size, and chamber leakage. Upon

completion of the endurance test, the Functional Checkout Test was again

performed on the ECA to determine changes in operating level that might

have occurred.
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Section 7

TEST RESULTS

The results of tests performed on the ACS are persented below. These

tests included a Functional Checkout, High and Low Temperatures, 60-day

Endurance Test, and a final Functional Checkout. Functional Checkout

Test Procedures were also performed while at high and low temperatures

and prior to the Endurance Test. Test requirements, setup, and procedures

have been described in previous sections.

7.1 TEST CHRONOLOGY

The chronological sequence of the test is listed in Table 18, which shows

scheduled events and also includes other significant occurrances during the

test. No failures of the equipment under test were encountered. Table 18

also shows the values of set point selected and the actual and simulated

chamber leakage rates that were tested.

Significant events included a shutdown for leakage check and rearrangement

of the MSS sample line location on August 1. Initial test results indicated

that the 02 and N2 inflow lines were located too close to the MSS sample

line inlet and inadequate mixing was occurring. This situation was corrected,

several leaks were found, and the test continued.

On August 3 a loss of the high pressure N2 supply occurred. Data was auto-

matically recorded during the failure and recovery from this fault which

is an important confirmation of analytically predicted fault detection

capability of the ACS.

After transition to the 14.7 psia set point, a large relief valve was found

to have opened, and was then fastened securely closed. It was not possible

to ascertain whether the improperly closed relief valve had been contributing

to chamber leakage prior to this time (during the 5 and 10 psia portions of

the test).
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Table 18

Chronology of Test Procedures

New Set Point New Leakage Rate
Total Pressure lb/day

Date Time Event PSIA (Torr) Actual (Simulated)

July 19, 1973 1445 Initial Functional
Checkout

July 20 1300 High Temperature Test

July 21 0940 Low Temperature Test

July 24 0930 Pre-Endurance Functional
Test

July 26 0900 Start of 60-day Endurance 5.0(258.5) 4.38(10.0)
Test

August 1 0900 Complete 5 psia period;
repressurize for leakage
check, recalib. flows,
and change sample line
location

August 1 1200 Resume test at new set 10.0(517) 5.32(12.15)
point using 10.4 Kohm
jumper

August 1 1425 Replaced jumper with 10.0(517)
19 Kohm (reduced N2
set point 0.020 v)

August 3 1130 N2 supply failure and 10.0(517)
correction

August 6 0806 Reduced leakage rate 10.0(517) 3.56(8.13)

August 7 1200 Changed set point 14.7(760)

August 8 0800 Found 6 in. relief valve
had opened as chamber
pressure approached
atmospheric

August 8 1425 Installed 4.7 Kohm jumper 14.7(760) 3.12(7.12)
in N2 set point
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Table 18 (Continued)

Chronology of Test Procedures

New Set Point New Leakage Rate
Total Pressure lb/day

Date Time Event PSIA (Torr) Actual (Simulated)

August 9 0800 Reduced leakage rate 14.7(760) 2.01(4.59)

August 10 0800 Reduced leakage rate 14.7(760) 1.69(3.86)

August 13 1130 Increased leakage rate " " 4.36(9.95)

August 16 0900 Inserted 22pF capacitors " " " "

in MSS 02 and N2 output

August 20 1130 Increased leakage rate " " 6.45(14.73)

August 27 1130 Increased leakage rate " " 8.15(18.61)

August 31 1130 Reduced leakage rate " " 4.07(9.29)

Sept. 5 1630 Stopped 02 and N2 in-
flow for chamber volume
and N2 pulse calibration

Sept. 6 1200 Resumed test 14.7(760) 6.50(14.84)

Sept. 7 1130 Reduced leakage rate " " 2.90(6.62)

Sept. 14 0930 Increased leakage rate " " 4.40(10.05)

Sept. 19 1130 Increased leakage rate " " 5.96(13.61)

Sept. 25 0800 Completed Endurance Test

Shut off N2 and 02 gas sup- -
ply and started pumpdown to
recheck chamber volume

Sept. 25 1630 Shut off leakage valve to
measure overnight chamber
pressure rise for leakage
check

Sept. 26 0800 Chamber pressure showed no
in-leak in 15-1/2 hours

Sept. 26 1400 Performed Post-Endurance
Functional Checkout Test
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Early in the 14.7 psia segment of the test, statistical analysis of recorded

PP N2 and PP 02 data showed a significant increase in standard deviation.

Troubleshooting indicated a high frequency ( 60 Hz) noise level of about

0.050 volts on the MSS output signals. On August 16, it was found that

insertion of 22 )f capacitors as filters on the output terminals for 02
and N2 of the Interface Buffer Assembly would reduce this noise level to

about 0.010 volt. Apparently this noise level had appeared on the MSS

signal at the start of 14.7 psia operation. Statistical deviations recorded

in PP 02 and PP N2 between August 8 and August 16 were therefore invalid

since they did not actually represent pressure fluctuations.

The calibration of chamber volume and N2 pulse size was done between 1630

on September 5 to 1200 on September 6.

The endurance test was completed at 0800 on September 25. The chamber

leakage test was then performed by pumping down to 730 torr and measuring

pressure change overnight. This confirmed that chamber leakage had been

essentially zero at least since August 8, when the relief valve was corrected.

The final functional checkout of the ECA was performed on September 26.

7.2 FUNCTIONAL CHECKOUT AND EXTREME TEMPERATURE TESTS

Functional Checkout Tests were performed on the ECA upon initial receipt,

during operation at high and low temperatures, and before and after the

60-day Endurance Tests. The data obtained, along with nominal values and

tolerances, is presented in Table 19. In addition, data was taken on

the pulse frequency of the N2 channel as a function of input voltage error.

Also it was found that the set point voltages sometimes resulted in operation

outside the desired control band. As noted in Section 5.3, when shorting

jumper3 were used to establish the set point (5 psia for 02 and 10 and 14.7
psia for N2 ) it was found that these set points could be corrected by using

fixed resistors in place of shorting jumpers. The resulting relationship of

decrease in set point to resistance value was then determined. These data

are presented below.
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Table 19

FUNCTIONAL CHECKOUT TEST DATA SUMMARY

Measured Values

Nominal High Temp Low Temp Pre-Endur. Post Endur.
Function Value Tolerance Initial (1030F) (360 F)

Power Supply Output +15 vdc +0.15 vdc +15.09 vdc 15.09 15.09 15.08 15.13
Power Supply Output -15 vdc +0.15 vdc -15.11 vdc -15.10 -15.12 -15.09 -15.11
Power Supply Output +5 vdc +0.2 vdc +5.008 vdc +5.008 +5.011 5.012 +5.019
Reference Voltage Supply -5 vdc +0.015 vdc -5.001 vdc -5.007 -5.000 -5.002 -5.013
02 Channel:

Low set point threshold,
5 psia 2.794 vdc +0.030 vdc 2.784 vdc 2.787 2.784 2.786 2.811
High set point threshold,
5 psia 2.794 vdc +0.030 vdc 2.797 vdc 2.800 2.796 2.798 2.824
High set point threshold,
10 and 14.7 psia 2.529 vdc +0.030 vdc 2.532 vdc 2.535 2.532 2.534 2.559
Low set point threshold,
10 and 14.7 psia 2.529 vdc +0.030 vdc 2.504 vdc 2.506 2.504 2.505 2.529
Upper integrator period
for 2 torr error 11.25 sec + 2 sec 10.94 sec 10.90 11.10 -- 10.78
Lower integrator period
for 2 torr error 11.25 sec + 2 sec 10.60 sec 10.34 10.93 -- 10.17

N2 Channel:
Integrator threshold,
5.0 psia 0.498 vdc +0.022 vdc 0.481 vdc 0.481 0.482 0.482 0.519
Integrator threshold,
10.0 psia 2.593 vdc +0.022 vdc 2.613 vdc 2.616 2.612 2.615 2.640
Integrator threshold,
14.7 psia 4.433 vdc +0.022 vdc 4.442 vdc 4.447 4.440 4.445 4.474
Integrator period for
2 torr error 22.5 sec + 4 sec 20.6 sec 20.12 20.55 21.46 21.17
Valve ON period 10 sec + 0.5 sec 10.0 sec 10.0 10.2 10.2 9.8



7.2.1 EFFECT OF TEMPERATURE EXTREMES

As shown in Table 19, the ECA was operated at 1030F and 360 F as well as

room temperature. The changes in set point were very small, being 2 to 4

millivolts on the 02 channel and 1 to 7 millivolts on the N2 channel.

The observed variations are summarized on Table 20 and are found to be

0.2% of actual value or less. The reference voltage was found to vary

0.14 percent, which accounts for most of the observed change in set point,

since this reference voltage is used to establish the input error to the

control channels.

The timing functions are also included in Table 20. These are established

by the clock circuit in the ECA and are shown to fall within reasonable

operating tolerances.

Table 20

DEPENDENCE OF ECA UPON AMBIENT TEMPERATURE

(360 F to 1030F)

Nominal Variation
Value Variation Percent

02 set point, 5 psia 2.794 volts .004 volts 0.14

02 set point, 10 and 14.7 psia 2.529 .003 0.12

N2 set point, 5 psia 0.498 .001 0.2

N2 set point, 10 psia 2.593 .004 0.15

N2 set point, 14.7 psia 4.433 .007 0.16

Reference voltage supply -5.00 .007 0.14

02 upper integrator period 11.25 sec. 0.20 sec. 1.78

02 lower integrator period 11.25 sec. 0.59 sec. 5.33

N2 integrator period 22.5 sec. 0.48 sec. 2.14

N2 valve ON period 10.0 sec. 0.2 sec. 2.0
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T.2.2 Comparison of Pre- and Post-Test Data

Comparing functional test data taken before and after the 60-day Endurance

Test from the two right-hand columns of Table 19, it is found that a sub-

stantial shift occurred during this time. This amounts to about 0.025 volts

(upward) on the 02 channel and about 0.035 volts (upward) on the N2 channel.

All set points shifted nearly the same amount. Since the MSS scale factor

is about 0.015 volts/torr on the 02 channel and 0.0075 volts/torr on the

N2 channel, these shifts correspond to about 1.6 torr (02) and 4.6 torr (N2)
respectively.

Upon reviewing test records, it appears that at least most of the shift

occurred at the start of the Endurance Test. A possible explanation is

that this is caused by installing a feed-thru connector eor the wire bundle

connecting the BCU and the ECA, so that the latter could be installed in the

test chamber. The shift may therefore be caused by ground-loop currents.

In any event, no significant change in operating set point occurred during

the Endurance Test, as will be shown by data presented later.

7.2.3 Correction of Set Points by Jumper Resistors

During system design it was decided to incorporate fixed resistors to establish

control settings. Each channel therefore has a resistor network at its

input. It was intended to provide set point changes by inserting shorting

plugs across proper points of these resistor networks. Wiring was provided

so these shorting connectors could be installed on the front panel of the

BCU to obtain the 5 psia 02 channel and 10 and 14.7 psia N2 channel settings.

It was determined prior to start of the Endurance Test that the set points,

obtainable through the use of shorting Jumpers, could be depressed by using

fixed resistors in place of shorting resistors. The analytical basis for

this is described in Section 5.3. Data was obtained for the N2 channel on

the effect of this resistor value in changing the set point. This data is

summarized in Figure 17. It is shown that the reduction in set point is
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proportional to resistance value, and amounts to about 1 torr (.0076

volts) for 3157 ohms at the 10 psia set point and 1 torr for 1114 ohms

at the 14.7 psia set point. These are in close agreement with the

analytically predicted values of Section 5.3.

7.2.4 Nitrogen Channel Pulse Frequency

The N2 channel is designed to produce an output pulse frequency proportional

to the difference between the set point reference voltage and the N2 input

signal. Data was taken to determine this operating characteristic. Figure

18 summarizes this data, applying the MSS conversion factor of 132 torr per

volt. The design value for integrator gain is given in Section 5.1.2 that

10560 pulses per hour per volt would be obtained. The performance data

on Figure 18 is equivalent to 11,400 pulses per hour per volt. This is

well within design requirements.

7.3 ENDURANCE TEST

The endurance test was performed for a period of 60 days (1440 hrs) and

was designed to demonstrate the capability of the ACS to control the pressure

and composition of the atmosphere in a closed chamber under a variety of

operating conditions, in accordance with specification requirements and

design criteria. The test chamber was actually a high vacuum test chamber

in the Space Simulation Laboratory at MDAC. It was selected because it

should be leak tight, enabling correlation of controlled input gas flow

and simulated leakage, and it was reasonably close to the Shuttle cabin

volume, so that the application of simple scaling relationships could

provide dynamic similarity to actual operations.

7.3.1 Auxiliary Tests and Calibrations

During the course of the endurance test, auxiliary procedures were followed

to provide system data on chamber volume, nitrogen pulse size, and chamber
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leakage. Although not performed in chronological order, these tests will

be reported first to provide background for the balance of the discussion

of Test Results.

7.3.1.1 Chamber Volume Determination

At 1630 on September 5, all gas inflow to the chamber was stopped and the

pump-out compressor allowed to continue running. By 0820 the next day,

a total of 993.6 liters had been recorded on the wet test meter. The

total pressure reading, by the Wallace and Tiernan precision gage, had

decreased from 760.2 torr to 730.2 torr. The mass spectrometer indicated

the following gas composition at the beginning of the pump-down:

Torr Wt. Fraction
lb/lb

Nitrogen 582.53 0.7522

Oxygen 166.61 0.2458

Water 1.63 0.0013

Carbon Dioxide 0.29 0.0005

751.06 0.9998

Assuming that the bubbler resulted in saturating the gas going through

the WTM with water vapor, the weight fraction of water vapor was raised

to 0.0155 lb/lb. The resulting density of the gas at the WTM was 0.0747

lb/cu ft. The gas passing through the WTM was then calculated by

w - 993.6 (liters) x 0.0747 (lb/cu ft)
28.317 (liters/cu ft)

= 2.6211 lbs.
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The amount of water vapor added in the bubbler was

w = 2.6211 (0.0155 - 0.0013)

= 0.0372 lbs.

And the net gas removed from the chamber was

we = 2.6211 - 0.0372

= 2.5839 lbs

The volume of the chamber was therefore given by

2.5839 (lbs) x 760 (torr)
.0747 (lb/cu ft) x 30 (torr)

= 876.3 cubic ft.

7.3.1.2 Nitrogen Pulse Size Calibration

Before the endurance test started, the N2 pulse size was determined to be

3.972 liters or 0.01055 lb per pulse by flowing 10 successive pulses through

the WTM. However, there was some reason to doubt this reading since the

mass balance data was not consistent and also the flow rate of gas - 24 liters

per minute - was considerably higher than the rating of the WTM of 3 liters

per minute. Therefore, at the conclusion of the pump-down test described

in the previous section, the N2 channel of the control was energized and

pressure rise was determined for a known number of pulses.

A total of 89 N2 gas pulses were added to the chamber, with an increase

in N2 partial pressure of 19.9 torr. This reading was obtained with both

the MSS output and the precision pressure gage. For a chamber volume of

876.3 cu. ft. and a N2 density at standard conditions of 0.07247 lb per cu

ft, it was found that the amount of N2 added was

876.3 (cu ft) x .07247 (lb/cu ft) x 19.9 (torr)
760 (torr)

= 1.6628 lb.
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Dividing this by the number of pulses, it was found that the size of each

N2 pulse was 0.018683 lb per pulse.

7.3.1.3 Chamber Leakage Check

Several attempts were made to perform leakage checks on the chamber. At

the close of the 5-day portion of the test the chamber was returned to

atmospheric pressure and the external lines were pressurized and leak

checked with soap solution. Several small leaks were found and repaired.

At the end of the 10 psia portion of the test, an attomatic transition

to the new set point was made. When chamber pressure reached about 750

torr a relief valve which had not previously been found, opened. It was

not certain that this valve had been free of leakage prior to this time.

It was fastened securely closed and the test continued.

At the close of the 60-day test the chamber was pumped down to an indicated

pressure of 732.1 torr. The MSS circulating system was left operating but

all leakage through the WTM was stopped at 1630. The next morning the

chamber pressure was found to be 730.0 torr. Since the barometric pressure

was 760.0 torr this may have been due to temperature decrease overnight,

or to leakage in the segment of the MSS circulating line between the

compressor and the return to the chamber, which was the only portion of

the system above ambient pressure azd therefore susceptible to out-leakage.

It was believed that the former (thermal change) had caused the pressure

decrease of 2.1 torr. However, if it had been entirely due to leakage, the

out flow rate would have been 0.28 lb per day, which is a relatively negligible

value.

7.3.2 Control Accuracy

The ECA is required to directly control 02 and N2 partial pressures. The

control of total pressure is secondary, since water vapor and CO2 may
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vary, particularly in a test of this type in which bottled gases are used

and abnormally low values of these parameters are encountered. Control

performance data on each of these parameters will be discussed in turn.

Data for evaluation of control accuracy was obtained from the automatic

data collection system, and was printed out usually at one-hour intervals.

There were periods of computer down-time and otherperiods during which

printed data was obtained at ten-minute intervals. However, the data pre-

sented herein was normally derived from the hourly data. Since it was

characterized by small, random variations about a mean value and there was

no apparent dependence upon run time, diurnal cycles, or other variables,

a statistical method of presentation was adopted. Data points were read

into a computer which calculated and printed a statistical analysis including

means, standard deviation, extreme variations, and cumulative distributions.

The data presented herein are summaries of each parameter. Detail test

data is presented in Reference 8.

7.3.2.1 Nitrogen Channel

During the 5 psia portion of the test it was found that the sample line to

the MSS was drawing gas from a region near the discharge of the 02 and N2
inflow lines. These readings were therefore influenced by the status of

the valves. Data presented herein was taken while the oxygen valve was

open which was the case most of the time. Figure 19 shows the cumulative

distribution of N2 partial pressures for this portion of the test. It

may be noticed that the median value is about 65.2 torr and the extremes

are 64.2 and 66.4 torr. This compares with requirements of 60.0 to 65.7

torr as given in Table 2.

At the end of the 5 psia segment, the MSS sample line inlet was relocated

to a point in the chamber some distance from the gas inlet lines, and a

small mixing fan installed, before starting operation at 10 psia. This

resulted in eliminating the mixing problem. Also, a jumper was used as
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discussed earlier to correct the N2 set point. Figure 20 shows the result-

ing data on N2 control. All points lie between 338.8 torr and 340.2 torr.

Table 2 shows the allowable range of 336.6 to 342.3 torr for this set point.

After transition to the 14.7 psia set point on August 7 (Day 13), the

balance of the endurance test was performed at this setting with a variety

of leakage values. A 4.7K ohm resistor was used in the set point jumper

to achieve the desired operating value of N2 partial pressure.

A summary of the data taken on the N2 channel at each value of chamber

leakage is shown in Table 21. The data at the 1.69 lb/day leakage value

was taken before the 22)f capacitor was installed; therefore standard

deviation and extreme values are not included. A cumulative frequency

summary of 721 data points at all leakage values is in Table 22. Only 4

points are below 580.7 torr and one above 584.4 torr. All these occurred

during the 5.96 lb/day leakage, which was at the end of the endurance test.

The allowable limits for N2 partial pressure variation according to Table 2

are 579.6 to 585.2 torr.

7.3.2.2. Oxygen Channel

Data for the 02 channel during the first 6 days of the test at the 5.0 psia

set point was influenced, as was that for the N2 channel, by the improper

mixing at the MSS sampling port. The effect was to depress readings with

the 02 valve closed and increase readings while it was open. This caused

the valve to change state (open or closed) much more rapidly than would

otherwise occur. The effect on control accuracy was not serious, however,

but the operating condition was not realistic except to demonstrate the

effect of improper sampling port design. The cumulative frequency of

valve opening conditions is shown on Figure 21. All data lies between

185 and 187.2 torr; the required range was 180.4 to 188.2 torr.
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Table 21

SUMMARY DATA ON N2 CHANNEL AT 14.7 PSIA

Std. #

Leakage Mean Deviation Min. Max. Points

lb/day torr torr torr torr

1.69* 583.25 - -

2.90 583.01 0.57 581.5 584.0 155

4.07 582.69 0.43 581.8 583.5 105

4.36 582.51 0.26 581.9 583.0 76

4.4o 582.37 0.42 581.5 583.2 55

5.96 582.03 0.76 579.3 585.2 110

6.45 581.89 0.32 581.2 582.6 145

8.15 581.48 0.39 580.7 582.2 75

721

* Note: Prior to installation of capacitor.

-94-



Table 22

SUMMARY OF CUMULATIVE FREQUENCY OF PPN2 DATA

14.7 PSIA SET POINT

Partial Pressure of N2  Frequency of Observations Fraction of Observations
Torr Less Than Stated Value Less Than Stated Value

579.25 0 0.0000

580.0 4 0.0055

580.7 4 0.0055

580.8 8 0.0111

581.2 27 0.0374

581.6 100 0.1387

582.0 229 0.3176

582.4 392 0.5437

582.8 554 0.7683

583.2 635 0.8807

583.6 694 0.9625

584.0 719 0.9972

584.4 720 0.9986

585.2 721 1.0000
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At the 10 psia set point the operation was normal due to the improved

location of the MSS sampling port and chamber atmosphere mixing. Operating

data is presented in Figure 22. The normal dead-band type of operation is

illustrated, with valve opening and closing occurring within relatively

narrow bands: 165.8 to 166.4 torr for opening and 168.1 to 168.8 for

closing. The remainder of the data is uniformly distributed between these

extremes. The required range of operation, from Table 2, is 162.3 to

170.1 torr; all operation is well within this range. The average time

for the valve OPEN condition was 1.71 hours and for the CLOSED condition,

3.80 hrs.

Data taken at the 14.7 psia set point is presented in Table 23. The statis-

tical data for valve opening and valve closing is shown for each value of

leakage after the MSS output noise problem was corrected. The required

operating band was 162.3 torr to 170.1 torr. Values of PP 02 between the

valve opening and closing points were uniformly distributed over the range,

as they were at 10 psia (see Figure 22).

The operating point of the 02 channel is not dependent upon the leakage,

as is the N2 channel, but the influence of the dead-band is apparent. Values

of valve opening range between 165.66 and 167.13 torr; for valve closing,

between 167.97 and 168.88 torr. The distinct difference between the opening

and closing suggests that the dead-band could be reduced for future appli-

cations - perhaps as much as 0.8 torr.

Table 24 summarizes the cumulative frequency of data taken for the 02 valve

opening and closing.

7.3.2.3 Total Pressures

The ACS was designed to control 02 and N2 partial pressures directly.

Total pressure control was therefore indirect. Total pressure readings

are subject to deviation due to the proportional band of the N2 channel,
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Table 23

SUMMARY DATA ON 02 CHANNEL AT 14.7 PSIA

Valve Opening Valve Closing
(torr) (torr)

Leakage Std. Std.
Lb/day Min. Mean Max. Deviation Min. Mean Max. Deviation

2.90 165.91 166.23 166.71 0.23 168.06 168.62 168.88 0.22

4.07 166.60 166.26 166.44 0.14 168.20 168.52 168.83 0.17

4.40o 165.93 166.22 167.13 0.36 167.97 168.28 168.54 0.18

5.96 165.79 166.18 166.68 0.26 168.19 168.47 168.73 0.16

6.45 165.66 166.12 166.36 0.18 168.26 168.42 168.63 0.12

8.15 165.89 166.16 166.56 0.19 168.07 168.31 168.59 0.15



Table 24

SUMMARY OF CUMULATIVE FREQUENCY OF 02 CONTROL DATA

14.7 PSIA SET POINT

Partial Pressure of 02 Frequency of Observations Fraction of Observations
torr Less Than Stated Value Less Than Stated Value

For Valve Opening:

165.6 0 0

165.8 2 0.0244

166.0 14 0.1708

166.2 41 0.5002

166.4 74 0.9028

166.6 78 0.9516

166.8 81 0.9882

167.0 81 0.0882

167.2 82 1.0000

For Valve Closing:

167.9 0 0

168.0 1 0.0120

168.2 7 0.0843

168.4 35 0.4217

168.6 64 0.7711

168.8 77 0.9277

168.9 83 1.0000
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or cabin leakage; the dead band of the 02 channel; errors in control of

both 02 and N2 channels; variations in partial pressures of water vapor

and CO2, and inaccuracies in the MSS compensating circuit which adjusts

channel gains to make the sumt: of partial pressures equal to total pressure.

During the endurance test, atmospheric 02 and N2 were provided from high

pressure supplies and there was no source of H20 or CO2 as there would be

in a manned cabin. Relatively low values of these gases were observed in

the atmosphere at the beginning of the test and these gradually declined

as initial residuals in the chamber were eliminated during the test. As

a result, total pressure readings were generally lower than nominal values.

As will be discussed in a later section, a gradual drift occurred in the

summation of MSS readings of H20,N2, 02 and CO2 as compared with total

pressure indicated by the precision pressure gage. Since the requirements

emphasize control accuracy and eliminate the accuracy of the MSS as a

subject of the test, data presented in this section are based upon summning

the partial pressures indicated by the MSS.

Figure 23 shows total pressures for the 5 psia portion of the test. All

readings are between 256.0 and 258.2 torr. The desired nominal value is

258.5 with allowable extremes of 248.2 to 268.8 torr. All data points are

well within allowable limits.

Readings of total pressure taken after stabilization at the 10 psia set

point are on Figure 24. All readings are between 504 and 511 torr, compared

with a specified range of 506.6 to 527.3 torr. Operation at the low end

of the range is due to the lack of H20 and CO2 in the chamber. The operating

band is only 7 torr, compared with the allowable band of 20.7 torr, showing

the potential accuracy of the control in an actual manned cabin.
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Total pressure data taken at the 14.7 psia set point is summarized for

each leakage value in Table 25. Values range from 747.27 to 755.74 torr.

The overall mean value of the 672 readings is 751.98 torr. The allowable

range of total pressures is 749.6 to 770.3 torr. When allowance is made

for the addition of water vapor and CO2 , the observed values are well within

requirements.

Table 26 presents a cumulative frequency summary of all total pressure

data. It is seen that only about 4 percent of the observed data points

are below the specification minimum, even without the 120 and CO2 addition.

7.3.3 Mass Balance Data

The possibility of measuring gas usage by counting pulses of a pulse frequency

proportional control has long been proposed. In order to evaluate this

method, data was collected during the Endurance Test. Total flow out of the

chamber was measured by the Wet Test Meter (WTM). The mass spectrometer

provided a continuous analysis of the effluent gas so that the amount of

nitrogen removed could be calculated. The nitrogen pulse size was calibrated

as explained in Section 7.3.1.2, and each pulse was found to be 0.018683

lbs of gas. Using this value and recorded N2 pulse counts, the N2 inflow

could be determined. The comparison of calculated N2 inflow and outflow

is presented in Table 27.

Some rather large discrepancies are indicated. The largest,, at 5 psia,

may be explained by atmospheric leakage into the chamber. Some leaks were

found and repaired after this segment of the test. Other deviations

emphasize the importance of careful design of the N2 gas supply system when

flow measurement is a requirement. In the present test, the system had

several poor features. About 40 ft of 1/4 inch tube was run between the

high pressure supply and the control panel. The pressure drop in this line

was observed to be significant. The pressure regulator available was

incapable of achieving a high enough setting; 19 psig was used during the
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Table 25

SUMMARY DATA ON TOTAL PRESSURES AT 14.7 PSIA SET POINT

Leakage Total Pressures (Torr) Standard Number of
lb/day Minimum Mean Maximum Deviation Readings

2.90 749.37 752.42 755.74 1.42 133

4.07 749.75 752.27 754.65 1.23 105

4.36* 751.43 753.34 755.39 1.03 76

4.40 748.88 751.31 753.87 1.25 54

5.96 747.27 751.07 754.o4 1.45 106

6.45 749.70 752.05 754.12 1.04 123

8.15 748.50 751.10 753.16 1.11 75

*NOTE: Readings only after installation of 22 if filter capacitors in 02
and N2 channels.
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TABLE 26

SUMMARY OF CUMULATIVE FREQUENCY OF TOTAL PRESSURE DATA

Total Pressure Frequency of Observations Fraction of Observations
Torr Less Than Stated Value Less Than Stated Value

747.0 0 0

747.5 2 0.0030

748.0 2 0.0030

748.5 5 0.0075

749.0 10 0.0149

749.5 27 0.0403

750.0 59 0.0879

750.5 105 0.1565

751.0 172 0.2563

751.5 243 0.3621

752.0 340 0.5067

752.5 422 0.6289

753.0 501 0.7466

753.5 558 0.8316

754.0 616 0.9180

754.5 650 0.9687

755.0 663 0.9881

755.5 671 0.9985

756.0 672 1.0000
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Table 27

MASS BALANCE SUMMARY

(N2 Pulse Size = 0.018683 lb per pulse)

N2 Flow Data Difference Error
Outflow Inflow (Out-In) (0-1/0)

Pressure Leakage lb/day lb/day lb/day percent

5 4.38 1.0612 0.8558 + 0.2054 + 19.4

10 5.32 3.2423 3.3116 - 0.0693 - 2.1

10 3.56 2.2115 2.0465 + 0.1650 + 7.5
14.7 1.69 1.2499 1.1759 + 0.0749 + 5.9
14.7 2.90. 2.1439 2.4473 - 0.3034 - 14.2

14.7 4.07 3.0070 3.0885 - 0.0815 - 2.17
14.7 4.36 3.2263 3.1094 + 0.1169 + 3.6

14.7 4.40 3.2545 3.2894 - 0.0349 - 1.1

14.7 5.96 4.4097 4.3914 + 0.0183 + 0.4

14.7 6.45 4.7716 4.2985 + 0.4731 + 9.9

14.7 8.15 6.0286 5.1877 + 0.8409 + 13.9

* NOTE: Reading error introduced by cabin in-leakage.
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test. Further the metering valve was operated wide open. All these features

tend to decrease the accuracy of the pulse size calibration. In spite of

these difficulties, the overall average of flow measurement error was found

to be 4.05 percent.

7.3.4 Leakage Measurement

Reference 2 has developed a method of measuring cabin leakage based either

upon N2 gas pulse frequency or upon N2 integrator output pulses per 10 minute

time period. This method was based upon an analytical model of control

system operation. Data was collected during the endurance test to experi-

mentally verify this leakage detection and measurement method and to provide

actual performance data in order to improve the analytical model.

Actual operating times for the N2 valve were recorded by the automatic data

system. After initial transients had subsided, the valve operating periods

were tabulated and statistically analyzed to determine the mean, standard

deviation, and extreme values that were encountered at each leakage value.

The reciprocals of these values, or pulse frequencies, are plotted in

Figure 25. This curve can be compared with corresponding data from Figure 17

of Reference 2. At the design value of Shuttle Cabin Leakage (12 lb/day

for orbiter; scaled to 5.25 lb/day during this test), it is found that the

+ 20 band (95% confidence) represents an actual flow variation of + 1.20

lb/day of leakage (+ 2.74 lb/day simulated leakage). This compares with

± 1.9 lb/day of Orbiter cabin leakage predicted by the analytical model.

Examination of transient values of N2 gas pulse period and N2 partial pressures

following step changes in cabin leakage show a tendency toward lower system

damping than was predicted by the analytical model. The latter shows

(Figure 7, Reference 2) a basically overdamped system which exponentially

approaches the new value following a change in leakage. Data from the

present test shows an underdamped system which tends to overshoot the final

value, then return to it. This loss of stability is typical of a control

system in which the loop gain is too high and there is an actual system

dynamic lag which was not included in the analytical model.
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Previously presented calibration data show that both the N2 integrator gain

and the gas pulse size are slightly larger than design values. Reducing

either or both of these would result in improved system stability and

reduce the amount of overshoot, at some small expense in operating accuracy.

It is believed that the dynamic lag which caused this destabilization is the

mixing time required between introduction of a gas pulse and obtaining a

mixed sample at the MSS inlet. Knowledge of this effect can enable improved

analytical modelling which will result in a selection of the most favorable

combination of design characteristics for accurate performance in pressure

control and leakage measurement, and best system response.

7.3.5 Transient Performance Data

Data was collected showing the speed of approach to a new set point in

partial pressure. At initial startup of the test, the chamber pressure was

pumped down to 73.0 torr, with PPN2 = 57.7 torr and PPO2 = 16.2 torr as

indicated by the MSS. The control was then initiated, at 0900, and the

transient in 02 and N2 partial pressures recorded. The results for the

first two hours are shown in Figures 26 and 27 respectively. The oxygen

partial pressure only increased 2 torr during this time; an increase of

170 torr was required to reach the set point. It was realized that the 02

flow capability of the system was inadequate to correct such a large error -

most of the 6 day test period would have been required just to reach the

set point. Procedures were therefore initiated to provide additional oxygen

from bottled storage to bring this partial pressure up to requirements.

The N2 partial pressure (Figure 27) had nearly reached the set point at the

end of the 2 hour period and showed the exponential approach characteristic

of proportional systems.
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The transition from 10 psia to 14.7 psia required only a change in N2 partial

pressure from approximately 340 torr to 583 torr. Although such a transition

probably would not be done automatically in an operational system (an

auxiliary repressurization valve would be used), it was felt that useful

data would be obtained if it were done during this test. Accordingly, the

set point was changed at 1200 on August 7. The subsequent transient was

recorded. Figure 28 shows the resultant change in nitrogen partial pressure.

The rate of increase was nearly constant, with virtually continuous pulsing

of the control, until about 540 torr was reached in 210 minutes. The effect

of the proportional band then caused the characteristic asymptotic approach

to the set point. The transient was terminated at 570 torr after 290 minutes

due to the accidental opening of the chamber relief valve, previously dis-

cussed.

The corresponding variation of integrator pulse frequency as a function of

N2 partial pressure is shown for this transient on Figure 29. This compares

with pretest data previously shown on Figure 9. The value of integrator gain

is 11,050 pulses per hour per volt, compared with 11,400 pulses per hour per
volt during the pretest measurement.

The resulting frequency of N2 valve operation during this transient was inter-
esting. The valve must stay open 10 seconds when energized. Initially the
integrator pulse frequency was about 19,200 per hour, resulting in the
integrator counter reaching 16 in about 3 seconds. The counter reset; the
valve remained open until the 10 second time was up, then closed even though
3 resets of the counter had occurred. At the next reset - 12 seconds after
the original opening - the valve received the next signal to open. As a
result, the valve operating frequency was about 300 per hour. As the pressure
increased, the integrator frequency decreased. At about 368 torr (N2 partial
pressure), the frequency had decreased to slightly less than 48 counts in
10 seconds, and the valve frequency increased from 270 per hour to 360 per
hour, or essentially continuously open. Further pressure increase caused
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the valve frequency to decrease to 240 per hour at a partial pressure of

437 torr, at which point the integrator count was 32 in 10 seconds, or 11520

per hour, and the valve frequency returned to 360 pulses per hour. At 514

torr, the valve frequency had dropped to 180 per hour and the integrator

frequency to 16 in 10 seconds. The valve frequency then went to 360 per

hour again since the valve opening pulses were slightly more than 10 seconds

apart. Further increase in partial pressure resulted in a corresponding,

linear decrease in valve frequency until the transient was terminated. This

valve operation is illustrated on Figure 30.

7.4 Mass Spectrometer Performance

Although evaluation of the mass spectrometer sensor was not part of the test

objectives, some data was obtained and will be reported for future reference.

From a qualitative standpoint, the excellent stability, repeatability, and

resolution of the MSS makes it an ideal sensor for use in the ACS. The

ability to obtain consistent data on chamber leakage by N2 gas pulse frequency

is an indication of these characteristics, since this could not be done if

resolution was poor or hysteresis was present. The response time to transients

is also very good.

During the testing period there was no re-calibration of the instrument, and

no failures. The MSS was received on November 1, 1972 and stored. On

December 22, 28 vdc power was supplied to the ion pump to maintain internal

vacuum. Although there had been no pumping for nearly two months, the unit

was still evacuated and the pump started immediately. Power has been kept

on the ion pump since that time, except for brief periods when the MSS was

moved to the endurance test area, then returned to the laboratory. The

unit was operated for about 62 days during the endurance test without problems.
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The MSS includes a total pressure transducer, and a gain adjusting circuit

is designed to make the sum of partial pressures of H20, N2 , 02 and CO2
equal to the total pressure. During the endurance test a gradual shift

was observed in this relationship. The difference between barometric pressure,

read by a precision Wallace and Tiernan gage with a rated accuracy of 0.1

percent, and the average of summed partial pressures of the MSS, is shown

on Figure 31. The indicated error started at about -0.7 percent and gradually

increased to +2.0 percent by the end of the test. The unit is being returned

to Perkin Elmer for examination to determine the cause of this dhift.

The MSS was supplied with ambient air samples several times during the test

period. The results of analysis of three such samples are shown on Table 28.

This confirms the gradual drift previously discussed. Since the major vari-

ation appears to be in the summation of partial pressures and the relative

percentages appear to remain close to that expected, it appears that the

drift is probably due to the pressure transducer, rather than some other

cause.

Another characteristic worth commenting upon was the high frequency noise

observed on the MSS output signals at the start of the 14.7 psia segment

of the test. This caused the data system to read pressure fluctuations

that were obviously not occurring. The noise level was reduced by about

80 percent by placing 22 microfarad capacitors at the output of the Inter-

face Buffer Assembly. The residual variation, especially in N2 partial

pressures, may well be due to this noise rather than to actual pressure

variations. The magnitude was not significant however.

This input noise did not adversely affect the control action. The means,

standard deviations, and extremes of N2 valve pulse frequency data taken

before and after the filters were inserted were virtually identical, showing

that the input integrator was successfully smoothing this noise.

-117-



_i_ _ _ _ _2 0 * .......... - --------------

20
2.5

18

16
S2.0

1A
12 i

Si I -1. 510
ca -!

I_ I I

E-4
4 o

S-0.5

0 0

-2

-4 - -- -0 ;5

-6i
S 6 10 1 22 26 30 3 7 11 15 19 23 27 3

- AUGUST > SEPTEMBER

FIGURE 31 CALIBRATION OF THE MASS SPECTROMETER SENSOR



Table 28

ANALYSIS OF AMBIENT AIR SAMPLES BY MASS SPECTROMETER

July 26, 1973 August 1, 1973 September 26, 1973
Torr Percent Torr Percent Torr Percent

(Volume) (Volume) (Volume)

Nitrogen 594.79 0.7663 597.43 0.7690 585.29 0.7817

Oxygen 161.11 0.2076 161.83 0.2083 158.33 0.2115

Water Vapor 19.31 0.0249 16.70 0.0215 4.62 0.0062

Carbon Dioxide 0.93 0.0012 0.87 0.0011 0.46 0.0006

Total 776.14 1.o000 776.83 0.9999 748.70 1.0000

Barometric Pressure 760.0 760.0 760.0

Error (percent) - 2.12 - 2.21 + 1.49
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7.5 Failure Data

There were no failures, either of the ECA or the MSS, during the testing

reported herein. A significant event did happen when the gaseous nitrogen

supply to the PCP failed. At about 1320 on August 3 it was found that the

N2 bottle had been replaced and the supply valve had not been turned on.

This failure was detected by noting that the N2 valve pulse period had

decreased from an earlier value of about 9.5 minutes (before lunch) to

about 2.5 minutes (after lunch). The valve was opened, but by about 1600

the period had only increased to about 4.5 minutes. A recheck showed that

the regulator setting at the gas bottle was low. After returning this to

the original setting, the pulse period increased to over 8 minutes.

The time sequence of N2 pulse period and corresponding data on N2 partial

pressure is shown on Figure 32. The rapid decrease in period following the

apparent loss of N2 supply is dramatic. The decrease of N2 partial pressure

is less than 4 torr in the meantime. If valve operating period had been

adequately monitored, the loss of N2 supply could have been detected within

about 30 minutes of its occurrence. This graphically points out the advantage

of monitoring N2 valve frequency as a failure indicating device.
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Section 8

DISCUSSION

The following interpretation and comments on the test results presented

in the previous section are appropriate:

8.1 CONTROL ACCURACY

The primary objective of the development of the Atmosphere Control Sub-

system was to design and build a flight qualifiable prototype and demon-

strate its ability to achieve accurate control over N2 and 02 partial

pressures. Figure 33 shows the results of data taken on the N2 channel

at the 14.7 psia set point, indicating the means and 95 percent confidence

bands at each level of leakage that was tested. Some of the indicated

variation in pressure is due to noise on the MSS output signal rather than

actual pressure fluctuation. Even so, all data falls between 580.5 and

584.15 torr, compared with the allowable range of 579.6 to 585.2 torr.

This corresponds to + 0.31 percent accuracy.

The 02 channel data is on Figure 34. Here the effect of the 02 dead band

and the lack of sensitivity to cabin leakage is apparent. All values of

02 partial pressure lie between 165.7 torr (3.20 psia) and 169.0 torr

(3.27 psia), compared with the specified band of 162.3 torr to 170.1 torr.

The total pressure data is shown on Figure 35. The total pressure operating

band is lower than nominal since the partial pressures of H20 and CO2 were

much lower in the test chamber than they would have been in the manned

cabin. All values lie between 748.0 torr (14.47 psia) and 755.5 torr

(14.62 psia) for an accuracy of + 0.5 percent.
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8.2 SET POINT ADJUSTMENT

The design approach of predetermining the control set point by selection

of an internal resistor network did not prove to be practical. However

it was possible to adjust the N2 set points for 10 and 14.7 psia operation

to fall within the desired band by use of external resistors. At the

14.7 psia set point the required resistor was found to be 1100 ohms per

torr of desired decrease. This portion of the endurance test was per-

formed with a 4700 ohm resistor. In future applications a selector switch

or potentiometer should be provided to enable trimming the set points to

the desired value.

8.3 FLOW MEASUREMENT BY COUNTING PULSES

Data was taken which related N2 valve pulses to N2 gas usage. An accuracy

of + 14 percent was obtained for averages over several days of operation.

It was felt that most of this inaccuracy was due to poor design of the N2
gas circuit. Tubing sizes were not large enough for the flow rate, line

lengths, and low operating pressures used, so that pressure drop occurred

in lines rather than the metering valve. Some effort is in order to devel6p

better design criteria for this installation, which includes a pressure

regulator, solenoid valve, metering orifice and interconnecting plumbing.

It is felt that there is an excellent potential for improving the accuracy

of this circuit.

8.4 LEAKAGE MEASUREMENT

Test data shows that cabin leakage can be measured by timing the interval

between successive N2 gas pulses (3 to 30 minutes over the range tested)

with an accuracy of + 2.75 lb/day of Shuttle equivalent flow at a 95 per-

cent confidence level. This compares with an analytical prediction of

± 1.9 lb/day. The difference appears to be due to a slight oscillatory

characteristics in the test data that was not present in the analytical

model. It is believed that this is caused by a delay in MSS output

following addition of a gas pulse due to mixing in the chamber and trans-

porting a mixed sample to the MSS. The system analysis should be modified
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to include this effect and further studied to determine the optimum

combination of design variables to obtain best system accuracy when

leakage measurement is a system requirement.

8.5 FAULT DETECTION

The measurement of time interval between gas pulses is a rapid indicator

of system failures such as gas supply loss or valve failure. This was

demonstrated by an incident in which N2 supply failed during the test.

With continuous monitoring, the failure could have been detected within

1/2 hour of occurrence. It was actually found by the engineering monitor

about 2 hours after occurrence. At that time the N2 pulse period had

dropped from approximately 9 minutes to 2.5 minutes. The associated

decrease in N2 partial pressure was only 4 torr.

8.6 OTHER CONTROL MODES

Although the ECA was tested using the MSS as sensor for the 02 and N2
partial pressures, it is adaptable for use with other sensors and control

modes. Typical of these are the Beckman polarographic or General Electric

fuel cell sensors for 02 partial pressure, and various total pressure,

sensors which are also required for cabin pressure monitoring.
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Section 9

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations can be made as a result of

the Atmosphere Control Subsystem program reported herein:

Accuracy of control operation on the pulse modulated proportional control

channel for pp N2 was + 0.31 percent; well within specification requirements.

Accuracy of the dead-band type of control on the pp 02 channel was excellent.

At the 14.7 psia set point all recorded values of pp 02 were within a 3.3

torr (0.065 psi) band width. There was indication that a narrower dead

band would have produced equally acceptable operation.

The design approach of determining the set points by pre-selection of input

circuit resistance values was inadequate. A method was found for inserting

external resistance into the circuit which allowed correction of operating

errors and achieved the desired set points. Some method is required in

operational use for accomplishing this fine trim of the set points. This

may be done by a fine selector switch or potentiometer.

Flow measurement by counting gas pulses was found to give an overall accuracy

of 4 percent, with shorter periods, of several days in length, having errors

as high as + 14 percent. Improvements can be made by proper design of

the pneumatic components (pressure regulator, solenoid valve, metering

orifice, and interconnecting plumbing). Further investigation of the

required design criteria is recommended.
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Leakage measurement data by relating gas inflow rate to chamber leakage

showed an accuracy of + 2.75 lb/day of Shuttle equivalent flow, compared

with analytical prediction of 1.90 lb/day. It was believed that some

inaccuracy may have been introduced by delays of mixing of cabin atmosphere.

This points out the importance of obtaining the atmosphere sample from a

well-mixed area and providing sample transport lines of minimum length to

the MSS. Further analytical and experimental studies are recommended to

improve the correlation between predicted and actual performance of this

leakage measurement method.

The ability to perform fault detection by monitoring the time interval

between N2 gas pulses was graphically illustrated by an occurrence in

which the failure of the high pressure N2 supply could have been detected

within 1/2 hour after occurrence.
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